A348383 Number of factorizations of n that are either separable (have an anti-run permutation) or are a twin (x*x).
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1
Keywords
Examples
The a(216) = 28 factorizations: (2*2*2*3*3*3) (2*2*2*3*9) (2*2*6*9) (3*8*9) (3*72) (216) (2*2*3*3*6) (2*3*4*9) (4*6*9) (4*54) (2*3*3*3*4) (2*3*6*6) (2*2*54) (6*36) (3*3*4*6) (2*3*36) (8*27) (2*2*3*18) (2*4*27) (9*24) (2*3*3*12) (2*6*18) (12*18) (2*9*12) (2*108) (3*3*24) (3*4*18) (3*6*12) The a(270) = 20 factorizations: (2*3*3*3*5) (2*3*5*9) (5*6*9) (3*90) (270) (3*3*5*6) (2*3*45) (5*54) (2*3*3*15) (2*5*27) (6*45) (2*9*15) (9*30) (3*3*30) (10*27) (3*5*18) (15*18) (3*6*15) (2*135) (3*9*10)
Crossrefs
Positions of 1's are 1 and A000040.
Not requiring separability gives A010052 for n > 1.
Positions of 2's are A323644.
The complement is counted by A348381.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
Comments