A348394 Primes preceding record runs of composites coprime to 30 (A007775).
7, 47, 113, 317, 523, 1327, 9551, 15683, 19609, 25471, 31397, 155921, 360653, 370261, 1349533, 1357201, 2010733, 4652353, 17051707, 20831323, 47326693, 122164747, 189695659, 191912783, 387096133, 1294268491, 1453168141, 2300942549, 3842610773, 4302407359, 10726904659, 20678048297, 22367084959, 25056082087, 42652618343, 127976334671, 182226896239
Offset: 1
Keywords
Examples
The next number coprime to 30 after 7 is 11, giving a run of 0 composites. 47 is followed by 49 = 7^2 and 53 (prime), a run of 1 composite. 113 is followed by 119 = 7*17, 121 = 11^2, and 127 (prime), a run of 2 composites. The first few entries correspond to the following table. The table contains the order in which record composites occur (n), the number of composites between successive primes (gap size), the prime preceding the record composites (1st prime), the prime following the record composites (2nd prime) and the merit of the gap (merit) rounded to 4 decimals. The merit is the gap size divided by the natural log of the 1st prime (gap size / log(1st prime)). n gap size 1st prime 2nd prime gap merit 1, 0, 7, 11, 0.0000 2, 1, 47, 53, 0.2597 3, 2, 113, 127, 0.4231 4, 3, 317, 331, 0.5209 5, 4, 523, 541, 0.6390 6, 8, 1327, 1361, 1.1126 7, 9, 9551, 9587, 0.9821 8, 10, 15683, 15727, 1.0352 9, 12, 19609, 19661, 1.2141 10, 13, 25471, 25523, 1.2814 11, 18, 31397, 31469, 1.7384 12, 22, 155921, 156007, 1.8399 13, 24, 360653, 360749, 1.8756 ... 38, 125, 182226896239, 182226896713, 4.8209
Links
- C. K. Caldwell, Table of Known Maximal Gaps
- P. H. Fry, J. Nesheivat and B. K. Szymanski, Computing Twin Primes and Brun's Constant: A Distributed Approach, IEEE Computer Society Press, 1998, pages 42-49.
Programs
-
Mathematica
Block[{m = Select[Range[29], CoprimeQ[#, 30] &], s, t}, s = Reap[Array[Map[If[! PrimeQ[#], Sow[#]] &, 30 # + m] &, 2^20]][[-1, -1]]; Set[{s, t}, Transpose@ #] &@ Tally@ Array[NextPrime[s[[#]], -1] &, Length@ s]; Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]] ] (* Michael De Vlieger, Oct 25 2021 *)
-
PARI
isok(x) = vecsearch([1, 7, 11, 13, 17, 19, 23, 29], x%30); nbc(n, v) = {my(i=n+1, c= v[i], nb=0); while(!isprime(c), nb++; i++; if (i>#v, return(-1)); c = v[i]); nb;} lista(nn) = {my(v = [2..nn], m=-1, nb); v = select(x->isok(x), v); v = apply(isprime, v); for (n=1, #v-1, if (isprime(v[n]), nb = nbc(n, v); if (nb==-1, break); if (nb > m, print1(v[n], ", "); m = nb);););} \\ Michel Marcus, Oct 21 2021
Comments