A348406 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n) with subparts.
2, 2, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 2, 1, 3, 1, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 2, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 2, 1, 3, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 1, 1, 3, 1, 2, 3, 2, 1, 1, 1, 3, 1
Offset: 1
Keywords
Examples
For n = 2, 6 and 10 the symmetric representation of sigma(n) with subparts respectively looks like this: . . _ _ _ . _| | | | | | . 2 |_ _| | | | | . _ _| | | | . | _ _| | | . _ _ _| |_| _ _| | . 6 |_ _ _ _| | _ _| . _ _|_| . | _| . _ _ _ _ _| | . 10 |_ _ _ _ _ _| . For n = 2 there are two vertices on the axis of symmetry hence the number of middle divisors of 2 is equal to 2 - 1 = 1. For n = 6 there are three vertices on the axis of symmetry hence the number of middle divisors of 6 is equal to 3 - 1 = 2. For n = 10 there is only one vertex on the axis of symmetry hence the number of middle divisors of 10 is equal to 1 - 1 = 0.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
a[n_] := 1 + DivisorSum[n, 1 &, n/2 <= #^2 < 2*n &]; Array[a, 100] (* Amiram Eldar, Oct 17 2021 *)
-
PARI
A067742(n) = sumdiv(n, d, my(d2 = d^2); n / 2 < d2 && d2 <= n << 1); \\ From A067742 A348406(n) = (1 + A067742(n));
Formula
a(n) = 1 + A067742(n).
Comments