A348433 a(1) = 1; a(n+1) = 2*a(n) if the digit sum of a(n) is already in the sequence, otherwise a(n+1) = digitsum(a(n)).
1, 2, 4, 8, 16, 7, 14, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 11, 22, 44, 88, 176, 352, 704, 1408, 13, 26, 52, 104, 208, 416, 832, 1664, 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 8704, 19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 19456, 25, 50, 100, 200
Offset: 1
Examples
The sum of the digits of a(4) = 8 is 8, which is already in the sequence, so a(5) = 2*8 = 16. The sum of the digits of a(5) = 16 is 7, which is not yet in the sequence, so a(6) = 7. From _Omar E. Pol_, Oct 19 2021: (Start) Written as an irregular triangle the sequence begins (see A348408): 1, 2, 4, 8, 16; 7, 14; 5, 10, 20, 40, 80, 160, 320, 640, 1280; 11, 22, 44, 88, 176, 352, 704, 1408; 13, 26, 52, 104, 208, 416, 832, 1664; 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 8704; 19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 19456; ... (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A348433
Programs
-
Mathematica
seq[len_] := Module[{s = {1}, k, d}, While[Length[s] < len, k = s[[-1]]; If[MemberQ[s, (d = Plus @@ IntegerDigits[k])], AppendTo[s, 2*k], AppendTo[s, d]]]; s]; seq[50] (* Amiram Eldar, Oct 19 2021 *)
-
PARI
lista(nn) = my(s, v=List([1])); for(n=1, nn, if(setsearch(vecsort(v), s=sumdigits(v[n])), listput(v, 2*v[n]), listput(v, s))); v \\ Jinyuan Wang, Oct 21 2021
-
PARI
See Links section.
Extensions
Definition and examples clarified by N. J. A. Sloane, Oct 24 2021
Comments