A348412 Numbers whose even divisors have an integer harmonic mean.
2, 6, 12, 30, 56, 84, 168, 270, 280, 540, 616, 840, 992, 1092, 1344, 2856, 2976, 3276, 3780, 4590, 5320, 5940, 7560, 12400, 12420, 14880, 16256, 16380, 18848, 24360, 26784, 36036, 37200, 37240, 41664, 48768, 49140, 55692, 60480, 65520, 86304, 86800, 111720, 128520
Offset: 1
Keywords
Examples
6 is a term since its even divisors are 2 and 6, and their harmonic mean, 1/((1/2 + 1/6)/2) = 3, is an integer.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..569
Programs
-
Mathematica
Select[Range[2, 10^5, 2], IntegerQ[HarmonicMean[Select[Divisors[#], EvenQ]]] &]
-
PARI
isok(m) = if (! (m%2), my(d=select(x->!(x%2), divisors(m))); denominator(#d/sum(k=1, #d, 1/d[k])) == 1); \\ Michel Marcus, Oct 31 2021
-
Python
from sympy import gcd, divisor_sigma A348412_list = [2*n for n in range(1,10**3) if (lambda x, y: 2*gcd(x,y*n)>=x)(divisor_sigma(n),divisor_sigma(n,0))] # Chai Wah Wu, Oct 20 2021
Comments