A348415 Numbers k such that k and k+1 have the same denominator of the harmonic means of their divisors.
12, 88, 180, 266, 321, 604, 4277, 4364, 8632, 15861, 18720, 28461, 47613, 63546, 97412, 98907, 135078, 137333, 154132, 179621, 185776, 192699, 203709, 265489, 284883, 344217, 383466, 517610, 604197, 876469, 1089604, 1277518, 1713865, 1839123, 1893268, 2349390
Offset: 1
Keywords
Examples
12 is a term since the harmonic means of the divisors of 12 and 13 are 18/7 and 13/7, respectively, and both have the denominator 7.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
dh[n_] := Denominator[DivisorSigma[0, n]/DivisorSigma[-1, n]]; Select[Range[10^6], dh[#] == dh[# + 1] &]
-
PARI
f(n) = my(d=divisors(n)); denominator(#d/sum(k=1, #d, 1/d[k])); \\ A099378 isok(k) = f(k) == f(k+1); \\ Michel Marcus, Oct 20 2021
Comments