cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348429 Perfect powers m^k, m >= 1, k >= 2 such that m and m^k both are palindromes.

Original entry on oeis.org

1, 4, 8, 9, 121, 343, 484, 1331, 10201, 12321, 14641, 40804, 44944, 1002001, 1030301, 1234321, 1367631, 4008004, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004, 404090404, 1003003001, 10000200001, 10221412201, 12102420121, 12345654321, 40000800004
Offset: 1

Views

Author

Bernard Schott, Oct 18 2021

Keywords

Comments

Complement of A348319 relative to the positive perfect powers A001597.
This sequence is infinite since each square (10^m+1)^2 is a term for m >= 0 and A033934 is a subsequence.
Observation: terms always contain an odd number of digits.
For k = 2, subsequence of palindromes whose square root is a palindrome is A057136 (see A057135).
For k = 3, except for 2201^3 = 10662526601, all known palindromic cubes have a palindromic rootnumber (see A002780 and A002781).
For k = 4, all known integers whose fourth power is a palindrome are also palindromes (see A056810 and subsequence A186080).
For k >= 5, G. J. Simmons conjectured there are no palindromes of the form m^k for k >= 5 and m > 1 (see Simmons link p. 98); according to this conjecture, all the terms are of the form (palindrome)^k, with 2 <= k <= 4.

Examples

			First few terms are equal to 1, 2^2, 2^3, 3^2, 11^2, 7^3, 22^2, 11^3, 101^2, 111^2, 11^4 = 121^2, 202^2, 212^2, 1001^2, 101^3, 1111^2, 111^3.
		

Crossrefs

Programs

  • Mathematica
    Block[{n = 10^6, nn, s}, s = Select[Range[2, n], PalindromeQ]; nn = Max[s]^2; {1}~Join~Union@ Reap[Table[Do[If[PalindromeQ[m^k], Sow[m^k]], {k, 2, Log[m, nn]}], {m, s}]][[-1, -1]]] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
    isok(m) = if (m==1, return (1)); my(p); ispal(m) && ispower(m, , &p) && ispal(p); \\ Michel Marcus, Oct 19 2021
    
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
    lista(nn) = {my(list = List(1)); for (k=2, sqrtint(nn), if (ispal(k), my(q = k^2); until (q > nn, if (ispal(q), listput(list, q)); q *= k;););); vecsort(list,,8);} \\ Michel Marcus, Oct 20 2021
  • Python
    # see link for faster version
    def ispal(n): s = str(n); return s == s[::-1]
    def aupto(limit):
        aset, m, mm = {1}, 2, 4
        while mm <= limit:
            if ispal(m):
                mk = mm
                while mk <= limit:
                    if ispal(mk): aset.add(mk)
                    mk *= m
            mm += 2*m + 1
            m += 1
        return sorted(aset)
    print(aupto(10**11)) # Michael S. Branicky, Oct 18 2021