cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348476 Number of compositions of n into exactly n nonnegative parts such that all positive parts are odd.

Original entry on oeis.org

1, 1, 1, 4, 13, 36, 106, 323, 981, 2992, 9196, 28392, 87946, 273287, 851579, 2659764, 8324357, 26100560, 81969496, 257800532, 811862268, 2559731360, 8079294664, 25525787344, 80719066698, 255466082911, 809138591431, 2564605664428, 8134003910311, 25813957574292
Offset: 0

Views

Author

Alois P. Heinz, Oct 19 2021

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 1: [1,1].
a(3) = 4: [3,0,0], [0,3,0], [0,0,3], [1,1,1].
a(4) = 13: [3,1,0,0], [3,0,1,0], [3,0,0,1], [1,3,0,0], [0,3,1,0], [0,3,0,1],[1,0,3,0], [0,1,3,0], [0,0,3,1], [1,0,0,3], [0,1,0,3], [0,0,1,3], [1,1,1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t=0, 1-signum(n),
          add(`if`(j=0 or j::odd, b(n-j, t-1), 0), j=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, t_] := b[n, t] = If[t == 0, 1 - Sign[n],
         Sum[If[j == 0 || OddQ[j], b[n - j, t - 1], 0], {j, 0, n}]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.22870495109450172934784925586... is largest positive root of the equation 4*d^4 - 12*d^3 + 4*d^2 - 24*d + 5 = 0 and c = 0.4302331663731241127284415754... is positive root of the equation 5824*c^8 - 32*c^4 - 4*c^2 - 5 = 0. - Vaclav Kotesovec, Nov 01 2021