A348493 a(n) = A003415(n) / gcd(A003415(n), A018804(n)), where A003415 is the arithmetic derivative and A018804 is Pillai's arithmetical function.
0, 1, 1, 1, 1, 1, 1, 3, 2, 7, 1, 2, 1, 3, 8, 2, 1, 1, 1, 1, 2, 13, 1, 11, 2, 1, 1, 4, 1, 31, 1, 5, 2, 19, 4, 5, 1, 7, 16, 17, 1, 41, 1, 2, 13, 5, 1, 7, 2, 3, 4, 7, 1, 1, 16, 23, 22, 31, 1, 23, 1, 11, 17, 3, 2, 61, 1, 3, 26, 59, 1, 13, 1, 13, 11, 10, 6, 71, 1, 11, 4, 43, 1, 31, 2, 3, 32, 1, 1, 41, 4, 4, 34, 49, 8
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Array[#2/GCD[#1, #2] & @@ {Total@ GCD[#, Range[#]], If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]]} &, 95] (* Michael De Vlieger, Oct 21 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804 A348493(n) = { my(u=A003415(n)); (u/gcd(u,A018804(n))); };