A348497 a(n) = gcd(A003415(n), A347130(n)), where A003415 is the arithmetic derivative and A347130 is its Dirichlet convolution with the identity function.
0, 1, 1, 2, 1, 5, 1, 12, 3, 7, 1, 16, 1, 9, 8, 16, 1, 21, 1, 24, 10, 13, 1, 44, 5, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 30, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 7, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 96, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71, 1, 176, 54, 43, 1, 124, 22, 45
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
f[n_] := If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Table[GCD[f[n], DivisorSum[n, # f[n/#] &]], {n, 86}] (* Michael De Vlieger, Oct 25 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A347130(n) = sumdiv(n,d,d*A003415(n/d)); A348497(n) = gcd(A003415(n), A347130(n));