cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348511 Numbers k for which 2k+1 can be obtained with successive prime shifts towards larger primes (by iterating A003961, starting from k).

Original entry on oeis.org

2, 3, 4, 5, 10, 11, 23, 29, 41, 53, 57, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1054, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Comments

Numbers k for which A246277(2k+1) = A246277(k). This in turn implies a looser condition A046523(2k+1) = A046523(k).
Conjecture: Apart from 4 all other terms in this sequence are squarefree. No counterexamples <= 2^22.

Examples

			4 is present, because by applying prime shift once to it, we get A003961(4) = 9 = 2*4 + 1.
5 is present, because by applying prime shift twice to it, we get 5 -> 7 -> 11 = 2*5 + 1.
		

Crossrefs

Subsequences: A005384 (primes present), A348514 (terms requiring only one iteration to reach 2k+1).
Cf. also A285706.

Programs

  • Maple
    filter:= proc(n) local F,F1,F2,G,G1,G2;
      F:= sort(ifactors(n)[2],(a,b) -> a[1] a[1] nops(G) then return false fi;
      F2:= map(t -> t[2],F);
      G2:= map(t -> t[2],G);
      if F2 <> G2 then return false fi;
      if nops(F) = 1 then return true fi;
      F1:= map(t -> numtheory:-pi(t[1]),F);
      G1:= map(t -> numtheory:-pi(t[1]),G);
      nops(convert(G1-F1,set))=1;
    end proc:
    select(filter, [$2..10000]);# Robert Israel, Feb 18 2022
  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := NestWhileList[s, n, # < 2*n + 1 &][[-1]] == 2*n + 1; Select[Range[2, 2000], q] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    isA348511(n) = (A246277(n)==A246277(1+n+n));