A348511 Numbers k for which 2k+1 can be obtained with successive prime shifts towards larger primes (by iterating A003961, starting from k).
2, 3, 4, 5, 10, 11, 23, 29, 41, 53, 57, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1054, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931
Offset: 1
Keywords
Examples
4 is present, because by applying prime shift once to it, we get A003961(4) = 9 = 2*4 + 1. 5 is present, because by applying prime shift twice to it, we get 5 -> 7 -> 11 = 2*5 + 1.
Links
Crossrefs
Programs
-
Maple
filter:= proc(n) local F,F1,F2,G,G1,G2; F:= sort(ifactors(n)[2],(a,b) -> a[1] a[1] nops(G) then return false fi; F2:= map(t -> t[2],F); G2:= map(t -> t[2],G); if F2 <> G2 then return false fi; if nops(F) = 1 then return true fi; F1:= map(t -> numtheory:-pi(t[1]),F); G1:= map(t -> numtheory:-pi(t[1]),G); nops(convert(G1-F1,set))=1; end proc: select(filter, [$2..10000]);# Robert Israel, Feb 18 2022
-
Mathematica
f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := NestWhileList[s, n, # < 2*n + 1 &][[-1]] == 2*n + 1; Select[Range[2, 2000], q] (* Amiram Eldar, Oct 30 2021 *)
-
PARI
A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); isA348511(n) = (A246277(n)==A246277(1+n+n));
Comments