A348524 Number of compositions (ordered partitions) of n into two or more cubes.
0, 0, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 119, 150, 187, 232, 286, 351, 430, 527, 649, 802, 993, 1230, 1522, 1880, 2318, 2854, 3514, 4330, 5341, 6594, 8145, 10061, 12423, 15330, 18908, 23316, 28753, 35467, 43762
Offset: 0
Keywords
Links
Programs
-
Maple
g:= proc(n) option remember; local i,m,t; m:= surd(n,3); if m::integer then t:= 1; m:= m-1 else t:= 0; m:= floor(m) fi; t + add(procname(n-i^3),i=1..m) end proc: f:= proc(n) local m; m:= surd(n,3); if m::integer then g(n)-1 else g(n) fi end proc: f(0):= 0: map(f, [$0..100]);
-
Mathematica
g[n_] := g[n] = Module[{m, t}, m = n^(1/3); If[IntegerQ[m], t = 1; m = m - 1, t = 0; m = Floor[m]]; t + Sum[g[n - i^3], {i, 1, m}]]; f[n_] := Module[{m}, m = n^(1/3); If[IntegerQ[m], g[n]-1, g[n]]]; f[0] = 0; Map[f, Range[0, 100]] (* Jean-François Alcover, Sep 19 2022, after Robert Israel *)