A348538 Number of partitions of n into 3 parts whose smallest part divides n.
0, 0, 1, 1, 2, 3, 3, 5, 5, 7, 5, 12, 6, 11, 12, 16, 8, 21, 9, 25, 18, 19, 11, 41, 18, 23, 24, 38, 14, 54, 15, 45, 30, 31, 36, 76, 18, 35, 36, 80, 20, 81, 21, 64, 68, 43, 23, 121, 39, 76, 48, 77, 26, 108, 60, 119, 54, 55, 29, 191, 30, 59, 101, 118, 72, 135, 33, 103, 66, 156, 35
Offset: 1
Keywords
Links
Crossrefs
Cf. A069905.
Programs
-
Maple
f:= proc(n) local i,j; add((floor((n-j)/2)-j+1), j = select(`<=`, numtheory:-divisors(n),n/3)) end proc: map(f, [$1..100]); # Robert Israel, Sep 30 2024
-
Mathematica
Array[Sum[Sum[(1 - Ceiling[#/j] + Floor[#/j]), {i, j, Floor[(# - j)/2]}], {j, Floor[#/3]}] &, 71] (* Michael De Vlieger, Oct 21 2021 *) Table[Count[IntegerPartitions[n,{3}],?(Divisible[n,#[[-1]]]&)],{n,80}] (* _Harvey P. Dale, Jul 10 2022 *)
Formula
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1 - ceiling(n/j) + floor(n/j)).