A348552 Number of integer partitions of n with the same alternating product as alternating sum.
0, 1, 1, 2, 2, 4, 5, 7, 8, 12, 14, 19, 23, 31, 36, 46, 55, 69, 83, 100, 122, 144, 175, 203, 249, 284, 348, 393, 484, 536, 661, 725, 898, 975, 1208, 1297, 1614, 1715, 2136, 2251, 2812, 2939, 3674, 3813, 4779, 4920, 6172, 6315, 7943, 8070, 10156, 10263, 12944
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 12 partitions: 1 2 3 4 5 6 7 8 9 111 211 221 42 322 332 333 311 222 331 422 441 11111 411 511 611 522 21111 22111 4211 711 31111 22211 22221 1111111 41111 32211 2111111 33111 51111 2211111 3111111 111111111 For example, we have 3 - 2 + 2 - 1 + 1 = 3 / 2 * 2 / 1 * 1 = 3, so the partition (3,2,2,1,1) is counted under a(9).
Crossrefs
The version for reverse-alternating sum (or product, or both) is A025065.
Dominated by A347446.
A000041 counts partitions with alternating sum 0.
A027187 counts partitions of even length.
A097805 counts compositions by sum and alternating sum.
A124754 gives alternating sums of standard compositions.
A277103 counts partitions with the same alternating sum as their conjugate.
A345927 gives alternating sums of binary expansions.
Programs
-
Mathematica
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[IntegerPartitions[n],altprod[#]==ats[#]&]],{n,0,30}]
Comments