A348559 Primes where every other digit is 3 starting with the rightmost digit, and no other digit is 3.
3, 13, 23, 43, 53, 73, 83, 313, 353, 373, 383, 1303, 1373, 2383, 2393, 4363, 4373, 5303, 5323, 5393, 6323, 6343, 6353, 6373, 7393, 8353, 8363, 9323, 9343, 30313, 30323, 31393, 32303, 32323, 32353, 32363, 34303, 34313, 35323, 35353, 35363, 35393, 36313, 36343
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f3:=func
; fc:=func ; [p:p in PrimesUpTo(40000)|f3(p) and fc(p)]; // Marius A. Burtea, Oct 22 2021 -
Mathematica
Select[Prime@Range@10000,(n=#;s={EvenQ,OddQ};t=Take[IntegerDigits@n,{#}]&/@Select[Range@i,#]&/@If[EvenQ[i=IntegerLength@n],s,Reverse@s];Union@Flatten@First@t=={3}&&FreeQ[Flatten@Last@t,3])&] (* Giorgos Kalogeropoulos, Oct 22 2021 *)
-
Python
from sympy import primerange as primes def ok(p): s = str(p) if not all(s[i] == '3' for i in range(-1, -len(s)-1, -2)): return False return all(s[i] != '3' for i in range(-2, -len(s)-1, -2)) print(list(filter(ok, primes(1, 36344)))) # Michael S. Branicky, Oct 22 2021
-
Python
# faster version for generating large initial segments of sequence from sympy import isprime from itertools import product def eo3(maxdigits): # generator for every other digit is 3, no other 3's yield 3 for d in range(2, maxdigits+1): if d%2 == 0: for f in "12456789": f3 = f + "3" for p in product("012456789", repeat=(d-1)//2): yield int(f3 + "".join(p[i]+"3" for i in range(len(p)))) else: for p in product("012456789", repeat=(d-1)//2): yield int("3" + "".join(p[i]+"3" for i in range(len(p)))) print(list(filter(isprime, eo3(5)))) # Michael S. Branicky, Oct 22 2021