A348560 Primes where every other digit is 7 starting with the rightmost digit, and no other digit is 7.
7, 17, 37, 47, 67, 97, 727, 757, 787, 797, 1747, 1787, 2707, 2767, 2797, 3727, 3767, 3797, 4787, 5717, 5737, 6737, 8707, 8737, 8747, 9767, 9787, 70717, 71707, 72707, 72727, 72767, 72797, 73727, 73757, 74707, 74717, 74747, 74797, 75707, 75767, 75787, 75797
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f7:=func
; fc:=func ; [p:p in PrimesUpTo(80000)|f7(p) and fc(p)]; // Marius A. Burtea, Oct 22 2021 -
Mathematica
Select[Prime@Range@10000,(n=#;s={EvenQ,OddQ};t=Take[IntegerDigits@n,{#}]&/@Select[Range@i,#]&/@If[EvenQ[i=IntegerLength@n],s,Reverse@s];Union@Flatten@First@t=={7}&&FreeQ[Flatten@Last@t,7])&] (* Giorgos Kalogeropoulos, Oct 22 2021 *)
-
Python
from sympy import primerange as primes def ok(p): s = str(p) if not all(s[i] == '7' for i in range(-1, -len(s)-1, -2)): return False return all(s[i] != '7' for i in range(-2, -len(s)-1, -2)) print(list(filter(ok, primes(1, 75798)))) # Michael S. Branicky, Oct 22 2021
-
Python
# faster version for generating large initial segments of sequence from sympy import isprime from itertools import product def eo7(maxdigits): # generator for every other digit is 7, no other 7's yield 7 for d in range(2, maxdigits+1): if d%2 == 0: for f in "12345689": f7 = f + "7" for p in product("012345689", repeat=(d-1)//2): yield int(f7 + "".join(p[i]+"7" for i in range(len(p)))) else: for p in product("012345689", repeat=(d-1)//2): yield int("7" + "".join(p[i]+"7" for i in range(len(p)))) print(list(filter(isprime, eo7(5)))) # Michael S. Branicky, Oct 22 2021