A348566 Triangle read by rows: T(m, n) is the number of symmetric recurrent sandpiles on an m X n grid (m >= 0, 0 <= n <= m).
1, 1, 4, 1, 3, 2, 1, 14, 7, 128, 1, 11, 5, 71, 36, 1, 52, 18, 1358, 539, 43264, 1, 41, 13, 769, 281, 17753, 6728, 1, 194, 47, 14852, 4271, 1452866, 434657, 151519232, 1, 153, 34, 8449, 2245, 603126, 167089, 46069729, 12988816, 1, 724, 123, 163534, 34276, 49704772, 10894561, 16236962114, 3625549353, 5475450241024
Offset: 0
Examples
The triangle begins: 1 1 4 1 3 2 1 14 7 128 1 11 5 71 36 1 52 18 1358 539 43264 1 41 13 769 281 17753 6728 ... See Fig. 9 of the paper by Florescu et al. for the T(4, 4) = 36 symmetric recurrent sandpiles on a 4x4 grid.
Links
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, El. J. Comb., 22 (2015), P1.66.
- Wikipedia, Abelian sandpile model
Formula
T(2m, 2n-1) = T(2n-1, 2m) = A103997(m, n). [Florescu et al., Theorem 18]
T(2m-1, 2n-1) = Product_{h=1..m, k=1..n} 4*(z(h, m) + z(k, n)) where z(k, n) = cos(Pi*(2k-1)/(4n)). [Florescu et al., Theorem 23]
This triangle can obviously be extended to n > m as T(m, n) = T(n, m).
Comments