A349547
a(n) is the length of the n-th row of A348575.
Original entry on oeis.org
9, 28, 100, 3660, 2, 4, 34, 279, 1342, 24486, 41, 4, 9, 37, 3373, 30332, 10768, 89207, 9888780, 118322, 103912, 1083421, 1095431404, 1182371, 33970573, 116430219, 3152744167, 24330557, 27560841783
Offset: 1
When A348575 is written as an irregular triangle, the first three rows are:
1, ..., 37: 9 terms
10, ..., 388: 28 terms
19, ..., 4969: 100 terms
The lengths of the rows are [9, 28, 100] respectively, the same as the first three terms of this sequence.
a(30) exceeds 4242640687120 (perhaps by orders of magnitude); see A349548. - _Jon E. Schoenfield_, Nov 29 2021
-
seq[len_] := Module[{s = {1}, sq = {}, i = 1, d}, While[Length[sq] < len, If[MemberQ[s, (d = Plus @@ IntegerDigits[s[[-1]]])], AppendTo[s, s[[-1]] + i], AppendTo[s, d]; AppendTo[sq, i]; i = 0]; i++]; sq]; seq[15] (* Amiram Eldar, Nov 23 2021 *)
Original entry on oeis.org
1, 10, 19, 28, 52, 8, 5, 17, 35, 44, 68, 24, 3, 12, 21, 51, 70, 58, 77, 107, 81, 75, 93, 144, 100, 118, 127, 151, 116, 167
Offset: 1
When A348575 is written as an irregular triangle, the first three rows start as:
1, 2, 4, ...
10, 11, 13, ...
19, 20, 22, ...
The first numbers of the rows are [1, 10, 19] respectively, the same as the first three terms of this sequence.
-
seq[len_] := Module[{s = sq = {1}, i = 1, d}, While[Length[sq] < len, If[MemberQ[s, (d = Plus @@ IntegerDigits[s[[-1]]])], AppendTo[s, s[[-1]] + i], AppendTo[s, d]; AppendTo[sq, d]; i = 0]; i++]; sq]; seq[15] (* Amiram Eldar, Nov 23 2021 *)
Original entry on oeis.org
37, 388, 4969, 6695998, 53, 14, 566, 38798, 899846, 299769899, 888, 30, 39, 678, 5686899, 459999997, 57969598, 3978899879, 48893979999887, 6999988788, 5398799997, 586899989985, 599984979886989999, 698999999779, 576999897988978, 6777997889978989
Offset: 1
-
seq[len_] := Module[{s = {1}, sq = {}, i = 1, d}, While[Length[sq] < len, If[MemberQ[s, (d = Plus @@ IntegerDigits[s[[-1]]])], AppendTo[s, s[[-1]] + i], AppendTo[s, d]; AppendTo[sq, s[[-2]]]; i = 0]; i++]; sq]; seq[15] (* Amiram Eldar, Nov 30 2021 *)
Showing 1-3 of 3 results.
Comments