cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348590 Number of endofunctions on [n] with exactly one isolated fixed point.

Original entry on oeis.org

0, 1, 0, 9, 68, 845, 12474, 218827, 4435864, 102030777, 2625176150, 74701061831, 2329237613988, 78972674630005, 2892636060014050, 113828236497224355, 4789121681108775344, 214528601554419809777, 10193616586275094959534, 512100888749268955942015
Offset: 0

Views

Author

Alois P. Heinz, Dec 20 2021

Keywords

Examples

			a(3) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
		

Crossrefs

Column k=1 of A350212.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
          b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1+t..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}] ;
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
         b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1 + t, n}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)

Formula

a(n) mod 2 = A000035(n).