A348610 Number of alternating ordered factorizations of n.
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 12, 1, 3, 3, 6, 1, 11, 1, 7, 3, 3, 3, 15, 1, 3, 3, 12, 1, 11, 1, 6, 6, 3, 1, 23, 1, 6, 3, 6, 1, 12, 3, 12, 3, 3, 1, 28, 1, 3, 6, 12, 3, 11, 1, 6, 3, 11, 1, 33, 1, 3, 6, 6, 3, 11, 1, 23, 4, 3
Offset: 1
Keywords
Examples
The alternating ordered factorizations of n = 1, 6, 12, 16, 24, 30, 32, 36: () 6 12 16 24 30 32 36 2*3 2*6 2*8 3*8 5*6 4*8 4*9 3*2 3*4 8*2 4*6 6*5 8*4 9*4 4*3 2*4*2 6*4 10*3 16*2 12*3 6*2 8*3 15*2 2*16 18*2 2*3*2 12*2 2*15 2*8*2 2*18 2*12 3*10 4*2*4 3*12 2*4*3 2*5*3 2*6*3 2*6*2 3*2*5 2*9*2 3*2*4 3*5*2 3*2*6 3*4*2 5*2*3 3*4*3 4*2*3 3*6*2 6*2*3 2*3*2*3 3*2*3*2
Links
- Wikipedia, Alternating permutation
Crossrefs
The complement is counted by A348613.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347463 counts ordered factorizations with integer alternating product.
A348379 counts factorizations w/ an alternating permutation.
A348380 counts factorizations w/o an alternating permutation.
Programs
-
Mathematica
ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] == Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Table[Length[Select[ordfacs[n],wigQ]],{n,100}]
Comments