A348613 Number of non-alternating ordered factorizations of n.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 8, 1, 0, 1, 2, 0, 2, 0, 9, 0, 0, 0, 11, 0, 0, 0, 8, 0, 2, 0, 2, 2, 0, 0, 25, 1, 2, 0, 2, 0, 8, 0, 8, 0, 0, 0, 16, 0, 0, 2, 20, 0, 2, 0, 2, 0, 2, 0, 43, 0, 0, 2, 2, 0, 2, 0, 25, 4, 0, 0, 16, 0
Offset: 1
Keywords
Examples
The a(n) ordered factorizations for n = 4, 12, 16, 24, 32, 36: 2*2 2*2*3 4*4 2*2*6 2*2*8 6*6 3*2*2 2*2*4 2*3*4 2*4*4 2*2*9 4*2*2 4*3*2 4*4*2 2*3*6 2*2*2*2 6*2*2 8*2*2 3*3*4 2*2*2*3 2*2*2*4 4*3*3 2*2*3*2 2*2*4*2 6*3*2 2*3*2*2 2*4*2*2 9*2*2 3*2*2*2 4*2*2*2 2*2*3*3 2*2*2*2*2 2*3*3*2 3*2*2*3 3*3*2*2
Links
- Wikipedia, Alternating permutation
Crossrefs
Programs
-
Mathematica
ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Table[Length[Select[ordfacs[n],!wigQ[#]&]],{n,100}]
Comments