A348634 Number of transitive relations on an n-set with exactly five ordered pairs.
0, 0, 0, 27, 768, 8771, 63468, 340620, 1470784, 5371002, 17153352, 49075521, 128066400, 309124101, 697874996, 1486830618, 3011414784, 5833686340, 10863883728, 19532496375, 34028554944, 57623258007, 95101946940, 153331834040, 241997811264, 374544148830, 569365964440, 851301035325, 1253479866912, 1819599953913, 2606698902276
Offset: 0
Keywords
Examples
No relation containing exactly five ordered pairs on a 2-element set exists. Thus a(2)=0. Also, there are 27 transitive relations with exactly five ordered pairs on a 3-set. One such relation is {(1,1),(1,2),(1,3),(2,2),(3,2)} on the 3-set {1,2,3}.
Programs
-
Python
def A348634(n): return n*(n - 2)*(n - 1)*(n*(n*(n*(n*(n*(n*(n - 17) + 167) - 965) + 3481) - 7581) + 9060) - 4608)//120 # Chai Wah Wu, Jan 06 2022
Formula
a(n) = 27*C(n,3) + 660*C(n,4) + 5201*C(n,5) + 21822*C(n,6) + 54600*C(n,7) + 84000*C(n,8) + 75600*C(n,9) + 30240*C(n,10).
a(n) = (1/120)*(n^10 - 20*n^9 + 220*n^8 - 1500*n^7 + 6710*n^6 - 19954*n^5 + 38765*n^4 - 46950*n^3 + 31944*n^2 - 9216*n).
a(n) = C(n,3)*(n^7 - 17*n^6 + 167*n^5 - 965*n^4 + 3481*n^3 - 7581*n^2 + 9060*n - 4608)/20. - Chai Wah Wu, Jan 06 2022
Extensions
a(9) corrected by Georg Fischer, Mar 19 2023