cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Firdous Ahmad Mala

Firdous Ahmad Mala's wiki page.

Firdous Ahmad Mala has authored 12 sequences. Here are the ten most recent ones:

A376064 Number of quasi-orders on an n-set that are not partial orders.

Original entry on oeis.org

0, 0, 1, 10, 136, 2711, 79504, 3405382, 211055975, 18749246912, 2365988624260, 420564361630293, 104490620009920522, 36030665275081893690, 17132727719926060775277, 11169098098145556139435182, 9930583626219881751366237516, 11985408843042557809380587456695, 19553143146433198202168306753032180
Offset: 0

Author

Firdous Ahmad Mala, Sep 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Part[ResourceFunction["OEISSequence"]["A000798"],n+1]-Part[ResourceFunction["OEISSequence"]["A001035"],n+1]; Array[a,18,0] (* Stefano Spezia, Sep 08 2024 *)

Formula

a(n) = A000798(n) - A001035(n).

A359810 Partial sums of A001035.

Original entry on oeis.org

1, 2, 5, 24, 243, 4474, 134497, 6264356, 437987735, 44949030246, 6656014279029, 1402937691384928, 416267888747238427, 172266996270334297778, 98656591253398541329961, 77665827611694086894379900, 83558195613101851900738636479, 122236099445908424714842019905630, 242061628696647085027612662167990653
Offset: 0

Author

Firdous Ahmad Mala, Jan 13 2023

Keywords

Comments

Since the number of partial orders is always odd, a(n) alternates in parity.

Examples

			a(2) = 1 + 1 + 3 = 5.
		

Crossrefs

A353179 a(n) is the first nonzero digit in the decimal expansion of 1/prime(n).

Original entry on oeis.org

5, 3, 2, 1, 9, 7, 5, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Firdous Ahmad Mala, Apr 29 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (p-> floor(10^length(p)/p))(ithprime(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 30 2022
  • Mathematica
    Table[RealDigits[1/Prime[n],10,1][[1]],{n,100}]//Flatten (* Harvey P. Dale, Aug 25 2024 *)
  • PARI
    a(n) = my(p=prime(n)); floor(10^(1+logint(p-1, 10))/p) \\ Felix Fröhlich, Apr 29 2022

Formula

a(n) = A052038(prime(n)).

Extensions

More terms from Felix Fröhlich, Apr 29 2022

A348634 Number of transitive relations on an n-set with exactly five ordered pairs.

Original entry on oeis.org

0, 0, 0, 27, 768, 8771, 63468, 340620, 1470784, 5371002, 17153352, 49075521, 128066400, 309124101, 697874996, 1486830618, 3011414784, 5833686340, 10863883728, 19532496375, 34028554944, 57623258007, 95101946940, 153331834040, 241997811264, 374544148830, 569365964440, 851301035325, 1253479866912, 1819599953913, 2606698902276
Offset: 0

Author

Firdous Ahmad Mala, Dec 13 2021

Keywords

Examples

			No relation containing exactly five ordered pairs on a 2-element set exists. Thus a(2)=0.
Also, there are 27 transitive relations with exactly five ordered pairs on a 3-set. One such relation is {(1,1),(1,2),(1,3),(2,2),(3,2)} on the 3-set {1,2,3}.
		

Crossrefs

Programs

  • Python
    def A348634(n): return n*(n - 2)*(n - 1)*(n*(n*(n*(n*(n*(n*(n - 17) + 167) - 965) + 3481) - 7581) + 9060) - 4608)//120 # Chai Wah Wu, Jan 06 2022

Formula

a(n) = 27*C(n,3) + 660*C(n,4) + 5201*C(n,5) + 21822*C(n,6) + 54600*C(n,7) + 84000*C(n,8) + 75600*C(n,9) + 30240*C(n,10).
a(n) = (1/120)*(n^10 - 20*n^9 + 220*n^8 - 1500*n^7 + 6710*n^6 - 19954*n^5 + 38765*n^4 - 46950*n^3 + 31944*n^2 - 9216*n).
a(n) = C(n,3)*(n^7 - 17*n^6 + 167*n^5 - 965*n^4 + 3481*n^3 - 7581*n^2 + 9060*n - 4608)/20. - Chai Wah Wu, Jan 06 2022

Extensions

a(9) corrected by Georg Fischer, Mar 19 2023

A350159 Number of subgroups of the dicyclic group Dic_n.

Original entry on oeis.org

3, 6, 8, 11, 10, 18, 12, 20, 19, 24, 16, 36, 18, 30, 32, 37, 22, 48, 24, 50, 40, 42, 28, 70, 37, 48, 48, 64, 34, 84, 36, 70, 56, 60, 56, 103, 42, 66, 64, 100, 46, 108, 48, 92, 90, 78, 52, 136, 63, 102, 80, 106, 58, 132, 80, 130, 88, 96, 64, 184, 66, 102, 116
Offset: 1

Author

Firdous Ahmad Mala, Dec 17 2021

Keywords

Examples

			a(2) = A000005(4) + A000203(2) = 3+3 = 6.
Given the fact that Dic_2 is isomorphic to the quaternion group Q_8, the subgroups of Dic_2 are isomorphic to the subgroups of Q_8 which are {1}, {1,-1}, {1,i,-1,-i}, {1,j,-1,-j}, {1,k,-1,-k} and Q_8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 2*n] + DivisorSigma[1, n]; Array[a, 50] (* Amiram Eldar, Dec 17 2021 *)
  • PARI
    a(n) = numdiv(2*n) + sigma(n); \\ Michel Marcus, Dec 18 2021

Formula

a(n) = A000005(2n) + A000203(n) = A099777(n) + A000203(n).

A349919 Number of transitive relations on an n-set with exactly two ordered pairs.

Original entry on oeis.org

0, 0, 5, 27, 90, 230, 495, 945, 1652, 2700, 4185, 6215, 8910, 12402, 16835, 22365, 29160, 37400, 47277, 58995, 72770, 88830, 107415, 128777, 153180, 180900, 212225, 247455, 286902, 330890, 379755, 433845, 493520, 559152, 631125, 709835, 795690, 889110, 990527, 1100385, 1219140, 1347260, 1485225, 1633527, 1792670
Offset: 0

Author

Firdous Ahmad Mala, Dec 05 2021

Keywords

Examples

			a(2) = 5. The five relations on a 2-set are {(1,1),(1,2)}, {(1,1),(2,1)}, {(1,1),(2,2)}, {(1,2),(2,2)} and {(2,1),(2,2)}.
		

Crossrefs

This is a diagonal of the array A285192.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,0,5,27,90},50] (* Harvey P. Dale, Oct 23 2022 *)

Formula

a(n) = 5*C(n,2) + 12*C(n,3) + 12*C(n,4).
a(n) = (1/2)*(n^4 - 2*n^3 + 4*n^2 - 3*n).
a(n) = A336535(n) - 1.
From Elmo R. Oliveira, Aug 26 2025: (Start)
G.f.: x^2*(5 + 2*x + 5*x^2)/(1 - x)^5.
E.g.f.: x^2*(5 + 4*x + x^2)*exp(x)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)

A349927 Number of transitive relations on an n-set with exactly three ordered pairs.

Original entry on oeis.org

0, 0, 2, 43, 276, 1150, 3710, 10017, 23688, 50556, 99450, 183095, 319132, 531258, 850486, 1316525, 1979280, 2900472, 4155378, 5834691, 8046500, 10918390, 14599662, 19263673, 25110296, 32368500, 41299050, 52197327, 65396268, 81269426, 100234150
Offset: 0

Author

Firdous Ahmad Mala, Dec 05 2021

Keywords

Examples

			a(2) = 2. These two transitive relations are {(1,1),(1,2),(2,2)} and {(1,1),(2,1),(2,2)} on the 2-set {1,2}.
		

Crossrefs

Programs

Formula

a(n) = 2*C(n,2) + 37*C(n,3) + 116*C(n,4) + 180*C(n,5) + 120*C(n,6).
a(n) = (1/6)*(n^6 - 6*n^5 + 24*n^4 - 47*n^3 + 38*n^2 - 10*n).

A349849 Number of transitive relations on an n-set with exactly four ordered pairs.

Original entry on oeis.org

0, 0, 1, 45, 549, 3755, 18120, 69006, 220710, 616554, 1545435, 3544915, 7552611, 15119325, 28699034, 52032540, 90643260, 152465316, 248625765, 394404489, 610396945, 923906655, 1370595996, 1996425530, 2859913794, 4034751150, 5612802975, 7707539151, 10457928495
Offset: 0

Author

Firdous Ahmad Mala, Dec 06 2021

Keywords

Examples

			a(2) = binomial(2,2) = 1. The only transitive relation with four ordered pairs on the 2-set {1,2} is {(1,1),(1,2),(2,1),(2,2)}.
		

Crossrefs

Formula

a(n) = C(n,2) + 42*C(n,3) + 375*C(n,4) + 1450*C(n,5) + 2940*C(n,6) + 3360*C(n,7) + 1680*C(n,8).
a(n) = (1/24)*(n^8 - 12*n^7 + 84*n^6 - 340*n^5 + 814*n^4 - 1130*n^3 + 829*n^2 - 246*n).

A349848 a(n) = Sum_{k=1..n} prime(n)^prime(k).

Original entry on oeis.org

4, 36, 3275, 840742, 285331320285, 304667330108466, 827250200736677741479, 1983900084687573008820254, 20880542756369384174903669400953, 2567686157477937962829648585022637187631942, 17086936018496343189927728440572423322828545911
Offset: 1

Author

Firdous Ahmad Mala, Dec 02 2021

Keywords

Examples

			For n=3, p=5, a(n) = 5^2 + 5^3 + 5^5 = 25 + 125 + 3125 = 3275.
		

Programs

  • PARI
    a(n) = my(p=prime(n)); sum(k=1, n, p^prime(k)); \\ Michel Marcus, Dec 02 2021
    
  • Python
    from sympy import prime, primerange
    def a(n): pn = prime(n); return sum(pn**pk for pk in primerange(1, pn+1))
    print([a(n) for n in range(1, 12)]) # Michael S. Branicky, Dec 02 2021

Extensions

More terms from Michel Marcus, Dec 02 2021

A348151 First differences of A006905.

Original entry on oeis.org

1, 11, 158, 3823, 150309, 9260886, 868807341, 121329481093, 24768540218324, 7282559551588341, 3046214096033592769, 1793950037677437221180, 1474265690307795355749075, 1677763495455703210030729685, 2626545934585707736394538773674, 5623547642339635201400382321016283
Offset: 1

Author

Firdous Ahmad Mala, Oct 03 2021

Keywords

Comments

Number of transitive relations involving a particular element of an n-set.

Examples

			a(3) = A006905(3) - A006905(2) = 171 - 13 = 158.
		

Crossrefs

Cf. A006905.

Formula

a(n) = A006905(n) - A006905(n-1).