cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349927 Number of transitive relations on an n-set with exactly three ordered pairs.

Original entry on oeis.org

0, 0, 2, 43, 276, 1150, 3710, 10017, 23688, 50556, 99450, 183095, 319132, 531258, 850486, 1316525, 1979280, 2900472, 4155378, 5834691, 8046500, 10918390, 14599662, 19263673, 25110296, 32368500, 41299050, 52197327, 65396268, 81269426, 100234150
Offset: 0

Views

Author

Firdous Ahmad Mala, Dec 05 2021

Keywords

Examples

			a(2) = 2. These two transitive relations are {(1,1),(1,2),(2,2)} and {(1,1),(2,1),(2,2)} on the 2-set {1,2}.
		

Crossrefs

Programs

Formula

a(n) = 2*C(n,2) + 37*C(n,3) + 116*C(n,4) + 180*C(n,5) + 120*C(n,6).
a(n) = (1/6)*(n^6 - 6*n^5 + 24*n^4 - 47*n^3 + 38*n^2 - 10*n).

A348634 Number of transitive relations on an n-set with exactly five ordered pairs.

Original entry on oeis.org

0, 0, 0, 27, 768, 8771, 63468, 340620, 1470784, 5371002, 17153352, 49075521, 128066400, 309124101, 697874996, 1486830618, 3011414784, 5833686340, 10863883728, 19532496375, 34028554944, 57623258007, 95101946940, 153331834040, 241997811264, 374544148830, 569365964440, 851301035325, 1253479866912, 1819599953913, 2606698902276
Offset: 0

Views

Author

Firdous Ahmad Mala, Dec 13 2021

Keywords

Examples

			No relation containing exactly five ordered pairs on a 2-element set exists. Thus a(2)=0.
Also, there are 27 transitive relations with exactly five ordered pairs on a 3-set. One such relation is {(1,1),(1,2),(1,3),(2,2),(3,2)} on the 3-set {1,2,3}.
		

Crossrefs

Programs

  • Python
    def A348634(n): return n*(n - 2)*(n - 1)*(n*(n*(n*(n*(n*(n*(n - 17) + 167) - 965) + 3481) - 7581) + 9060) - 4608)//120 # Chai Wah Wu, Jan 06 2022

Formula

a(n) = 27*C(n,3) + 660*C(n,4) + 5201*C(n,5) + 21822*C(n,6) + 54600*C(n,7) + 84000*C(n,8) + 75600*C(n,9) + 30240*C(n,10).
a(n) = (1/120)*(n^10 - 20*n^9 + 220*n^8 - 1500*n^7 + 6710*n^6 - 19954*n^5 + 38765*n^4 - 46950*n^3 + 31944*n^2 - 9216*n).
a(n) = C(n,3)*(n^7 - 17*n^6 + 167*n^5 - 965*n^4 + 3481*n^3 - 7581*n^2 + 9060*n - 4608)/20. - Chai Wah Wu, Jan 06 2022

Extensions

a(9) corrected by Georg Fischer, Mar 19 2023
Showing 1-2 of 2 results.