A348641 Numerators of the remainders in the greedy Egyptian fraction representation of 1 with square denominators (A348626).
1, 3, 1, 1, 5, 1, 13, 1, 1, 11, 817, 10252633, 100287877217, 6528073355352461938177, 62417959978427831731164878741347502689913, 70288410375198910851231147751405037331087262102769745506188780420713, 1637848790982120651632223869737258212156187623721099799629950249330321081907360495884020503587938103781073751577
Offset: 0
Examples
The first few remainders are 1, 3/4, 1/2, 1/4, 5/36, 1/36, 13/1764, 1/2352, 1/115248, 11/416333400, ... - _N. J. A. Sloane_, Apr 21 2025
Programs
-
PARI
s=1; for(n=1, 20, print1(numerator(s), ", "); t=sqrtint(floor(1/s))+1; s-=1/t^2);
Formula
a(n) = numerator of 1 - Sum_{k=1..n} 1/A348626(k)^2.
Comments