A348658 Numbers whose numerator and denominator of the harmonic mean of their divisors are both Fibonacci numbers.
1, 3, 5, 6, 15, 21, 28, 140, 182, 496, 546, 672, 918, 1890, 2016, 4005, 4590, 24384, 52780, 55860, 68200, 84812, 90090, 105664, 145782, 186992, 204600, 381654, 728910, 907680, 1655400, 2302344, 2862405, 3828009, 3926832, 5959440, 21059220, 33550336, 33839988, 42325920
Offset: 1
Keywords
Examples
3 is a term since the harmonic mean of its divisors is 3/2 = Fibonacci(4)/Fibonacci(3). 15 is a term since the harmonic mean of its divisors is 5/2 = Fibonacci(5)/Fibonacci(3).
Crossrefs
Programs
-
Mathematica
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[{5 n^2 - 4, 5 n^2 + 4}]; h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; q[n_] := fibQ[Numerator[(hn = h[n])]] && fibQ[Denominator[hn]]; Select[Range[1000], q]
-
Python
from itertools import islice from sympy import integer_nthroot, gcd, divisor_sigma def A348658(): # generator of terms k = 1 while True: a, b = divisor_sigma(k), divisor_sigma(k,0)*k c = gcd(a,b) n1, n2 = 5*(a//c)**2-4, 5*(b//c)**2-4 if (integer_nthroot(n1,2)[1] or integer_nthroot(n1+8,2)[1]) and (integer_nthroot(n2,2)[1] or integer_nthroot(n2+8,2)[1]): yield k k += 1 A348658_list = list(islice(A348658(),10)) # Chai Wah Wu, Oct 28 2021
Comments