cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348658 Numbers whose numerator and denominator of the harmonic mean of their divisors are both Fibonacci numbers.

Original entry on oeis.org

1, 3, 5, 6, 15, 21, 28, 140, 182, 496, 546, 672, 918, 1890, 2016, 4005, 4590, 24384, 52780, 55860, 68200, 84812, 90090, 105664, 145782, 186992, 204600, 381654, 728910, 907680, 1655400, 2302344, 2862405, 3828009, 3926832, 5959440, 21059220, 33550336, 33839988, 42325920
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2021

Keywords

Comments

Terms that also Fibonacci numbers are 1, 3, 5, 21, and no more below Fibonacci(300).

Examples

			3 is a term since the harmonic mean of its divisors is 3/2 = Fibonacci(4)/Fibonacci(3).
15 is a term since the harmonic mean of its divisors is 5/2 = Fibonacci(5)/Fibonacci(3).
		

Crossrefs

Similar sequences: A074266, A123193, A272412, A272440, A348659.

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[{5 n^2 - 4, 5 n^2 + 4}]; h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; q[n_] := fibQ[Numerator[(hn = h[n])]] && fibQ[Denominator[hn]]; Select[Range[1000], q]
  • Python
    from itertools import islice
    from sympy import integer_nthroot, gcd, divisor_sigma
    def A348658(): # generator of terms
        k = 1
        while True:
            a, b = divisor_sigma(k), divisor_sigma(k,0)*k
            c = gcd(a,b)
            n1, n2 = 5*(a//c)**2-4, 5*(b//c)**2-4
            if (integer_nthroot(n1,2)[1] or integer_nthroot(n1+8,2)[1]) and (integer_nthroot(n2,2)[1] or integer_nthroot(n2+8,2)[1]):
                yield k
            k += 1
    A348658_list = list(islice(A348658(),10)) # Chai Wah Wu, Oct 28 2021