cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348666 a(n) is the number of quiddities of 3-periodic dissections of (n + 2)-gons.

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 166, 577, 2050, 7414, 27201, 100984, 378651, 1431901, 5454718, 20912754, 80630085, 312430832, 1216045522, 4752132953, 18638125275, 73340870891, 289463959745, 1145612705905, 4545478673125, 18077348646721, 72048928923617, 287733587217552, 1151233484320195
Offset: 0

Views

Author

Michael De Vlieger, Oct 28 2021

Keywords

Comments

See Conley-Ovsienko paper, p. 6.
a(0) = 1 by convention.

Crossrefs

Cf. A218251.

Programs

  • Mathematica
    {1}~Join~Array[Sum[(3 (k - s) + 2)/(# - s + 1)*Binomial[# - 3 k + s - 2, s]*Binomial[2 # - 3 k - s - 1, # - 3 k - 1], {k, 0, #/3}, {s, 0, k}] &, 29]

Formula

a(n) = Sum_{k=0..n/3} Sum_{s=0..k} ((3*(k-s) + 2)/(n-s+1)) * binomial(n-3*k+s-2,s) * binomial(2*n-3*k-s-1,n-3*k-1).
a(n) ~ c * d^n / n^(3/2), where d = 4.21429839439676340483426656814177802445... is the root of the equation 4 - 12*d^2 - 8*d^3 + 12*d^4 - 20*d^5 + d^7 = 0 and c = 0.590856549086828350357357054105900401452384216047617779361986537... - Vaclav Kotesovec, Nov 04 2021