cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348670 Decimal expansion of 10 - Pi^2.

Original entry on oeis.org

1, 3, 0, 3, 9, 5, 5, 9, 8, 9, 1, 0, 6, 4, 1, 3, 8, 1, 1, 6, 5, 5, 0, 9, 0, 0, 0, 1, 2, 3, 8, 4, 8, 8, 6, 4, 6, 8, 6, 3, 0, 0, 5, 9, 2, 7, 5, 9, 2, 0, 9, 3, 7, 3, 5, 8, 6, 6, 5, 0, 6, 2, 3, 7, 7, 9, 9, 5, 5, 1, 7, 7, 5, 8, 0, 7, 9, 4, 7, 5, 6, 9, 9, 8, 2, 2, 6, 5, 9, 6, 2, 8, 1, 4, 4, 7, 7, 6, 8, 1, 7, 5, 9, 7, 4
Offset: 0

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Comments

Let ABC be a unit-area triangle, and let P be a point uniformly picked at random inside it. Let D, E and F be the intersection points of the lines AP, BP and CP with the sides BC, CA and AB, respectively. Then, the expected value of the area of the triangle DEF is this constant.

Examples

			0.13039559891064138116550900012384886468630059275920...
		

References

  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013, p. 220.
  • A. M. Mathai, An introduction to geometrical probability: distributional aspects with applications, Amsterdam: Gordon and Breach, 1999, p. 275, ex. 2.5.3.

Crossrefs

Programs

  • Mathematica
    RealDigits[10 - Pi^2, 10, 100][[1]]
  • PARI
    10 - Pi^2 \\ Michel Marcus, Oct 29 2021

Formula

Equals Sum_{k>=1} 1/(k*(k+1))^3 = Sum_{k>=1} 1/A060459(k).
Equals 6 * Sum_{k>=2} 1/(k*(k+1)^2*(k+2)) = Sum_{k>=3} 1/A008911(k).
Equals 2 * Integral_{x=0..1, y=0..1} x*(1-x)*y*(1-y)/(1-x*y)^2 dx dy.
Equals 4 * Sum_{m,n>=1} (m-n)^2/(m*n*(m+1)^2*(n+1)^2*(m+2)*(n+2)) (Sitaru, 2023). - Amiram Eldar, Aug 18 2023