A348670 Decimal expansion of 10 - Pi^2.
1, 3, 0, 3, 9, 5, 5, 9, 8, 9, 1, 0, 6, 4, 1, 3, 8, 1, 1, 6, 5, 5, 0, 9, 0, 0, 0, 1, 2, 3, 8, 4, 8, 8, 6, 4, 6, 8, 6, 3, 0, 0, 5, 9, 2, 7, 5, 9, 2, 0, 9, 3, 7, 3, 5, 8, 6, 6, 5, 0, 6, 2, 3, 7, 7, 9, 9, 5, 5, 1, 7, 7, 5, 8, 0, 7, 9, 4, 7, 5, 6, 9, 9, 8, 2, 2, 6, 5, 9, 6, 2, 8, 1, 4, 4, 7, 7, 6, 8, 1, 7, 5, 9, 7, 4
Offset: 0
Examples
0.13039559891064138116550900012384886468630059275920...
References
- Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013, p. 220.
- A. M. Mathai, An introduction to geometrical probability: distributional aspects with applications, Amsterdam: Gordon and Breach, 1999, p. 275, ex. 2.5.3.
Links
- R. W. Gosper, Acceleration of Series, AIM-304 (1974), page 71.
- Olivier Schneegans, How Close to 10 is Pi^2?, The American Mathematical Monthly, Vol. 126, No. 5 (2019), p. 448.
- Daniel Sitaru, Problem B131, Crux Mathematicorum, Vol. 49, No. 7 (2023), p. 381.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[10 - Pi^2, 10, 100][[1]]
-
PARI
10 - Pi^2 \\ Michel Marcus, Oct 29 2021
Formula
Equals Sum_{k>=1} 1/(k*(k+1))^3 = Sum_{k>=1} 1/A060459(k).
Equals 6 * Sum_{k>=2} 1/(k*(k+1)^2*(k+2)) = Sum_{k>=3} 1/A008911(k).
Equals 2 * Integral_{x=0..1, y=0..1} x*(1-x)*y*(1-y)/(1-x*y)^2 dx dy.
Equals 4 * Sum_{m,n>=1} (m-n)^2/(m*n*(m+1)^2*(n+1)^2*(m+2)*(n+2)) (Sitaru, 2023). - Amiram Eldar, Aug 18 2023
Comments