A348679 Triangle read by rows, T(n, k) = numerator([x^k] M(n, x)) where M(n,x) are the Mandelbrot-Larsen polynomials defined in A347928.
0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 3, 3, 5, 0, 0, 1, 5, 5, 7, 0, 0, 3, 13, 21, 35, 21, 0, 0, 0, 5, 25, 45, 63, 33, 0, 1, 7, 21, 245, 7, 385, 231, 429, 0, 0, 1, 9, 45, 555, 129, 819, 429, 715, 0, 0, 3, 45, 55, 1155, 2695, 2387, 3465, 6435, 2431
Offset: 0
Examples
Triangle read by rows: [0] 0 [1] 0, 1 [2] 0, 1, 1 [3] 0, 0, 1, 1 [4] 0, 1, 3, 3, 5 [5] 0, 0, 1, 5, 5, 7 [6] 0, 0, 3, 13, 21, 35, 21 [7] 0, 0, 0, 5, 25, 45, 63, 33 [8] 0, 1, 7, 21, 245, 7, 385, 231, 429 [9] 0, 0, 1, 9, 45, 555, 129, 819, 429, 715
Links
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Trans., Vol. 1, No. 1, Article 14037 (July 2021).
- Michael Larsen, Multiplicative series, modular forms, and Mandelbrot polynomials, in: Mathematics of Computation 90.327 (Sept. 2020), pp. 345-377. Preprint: arXiv:1908.09974 [math.NT], 2019.
Programs
-
Maple
# Polynomials M are defined in A347928. T := (n, k) -> numer(coeff(M(n, x), x, k)): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;