cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A348680 Decimal expansion of the average length of a chord in a unit square defined by a point on the perimeter and a direction, both uniformly and independently chosen at random.

Original entry on oeis.org

7, 0, 9, 8, 0, 1, 5, 0, 6, 6, 1, 4, 0, 0, 7, 8, 2, 7, 4, 6, 3, 7, 4, 7, 3, 1, 4, 6, 4, 4, 5, 1, 7, 9, 7, 1, 9, 4, 9, 9, 4, 0, 8, 5, 3, 4, 4, 5, 4, 5, 2, 4, 7, 3, 5, 5, 8, 9, 5, 4, 9, 2, 1, 5, 0, 7, 8, 9, 8, 0, 1, 3, 5, 9, 1, 0, 1, 4, 4, 4, 2, 2, 6, 2, 1, 0, 4, 2, 9, 8, 8, 2, 9, 5, 7, 0, 1, 2, 5, 7, 9, 7, 9, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Examples

			0.70980150661400782746374731464451797194994085344545...
		

References

  • A. M. Mathai, An introduction to geometrical probability: distributional aspects with applications, Amsterdam: Gordon and Breach, 1999, p. 221, ex. 2.3.7.

Crossrefs

Programs

  • Mathematica
    RealDigits[(3 * Log[1 + Sqrt[2]] + 1 - Sqrt[2])/Pi, 10, 100][[1]]
  • PARI
    (3*log(1 + sqrt(2)) + 1 - sqrt(2))/Pi \\ Michel Marcus, Oct 29 2021

Formula

Equals (3*log(1 + sqrt(2)) + 1 - sqrt(2))/Pi.

A348682 Decimal expansion of the average length of a chord in a unit cube defined by a point on the surface and a direction, both uniformly and independently chosen at random.

Original entry on oeis.org

5, 9, 7, 7, 5, 5, 7, 4, 3, 5, 9, 2, 7, 3, 3, 7, 3, 9, 8, 1, 5, 1, 9, 6, 0, 7, 9, 8, 2, 7, 4, 7, 3, 5, 9, 6, 9, 7, 2, 4, 8, 2, 0, 2, 2, 2, 4, 9, 5, 2, 7, 8, 5, 1, 5, 6, 1, 8, 2, 9, 5, 0, 4, 3, 2, 5, 0, 3, 8, 0, 6, 5, 1, 5, 0, 4, 9, 6, 7, 8, 2, 2, 9, 3, 2, 7, 4, 9, 5, 1, 6, 1, 5, 5, 0, 3, 7, 1, 0, 8, 1, 4, 1, 1, 0
Offset: 0

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Examples

			0.5977557435927337398151960798274735969724820222495278516...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(1/(3*Pi)) * (2*Pi - 6 + 2*Log[2] + 7*Log[3]/2 + 4*Sqrt[2]*ArcCot[Sqrt[2]]) - (4/Pi) * Integrate[Sqrt[x^2-1] * (x * ArcCot[x] + Log[1 + x^2]/2) / x, {x, 1, Sqrt[2]}], 110], 10, 100][[1]]

Formula

Equals (1/(3*Pi)) * (2*Pi - 6 + 2*log(2) + 7*log(3)/2 + 4*sqrt(2)*arccot(sqrt(2))) - (4/Pi) * Integral_{x=1..sqrt(2)} (sqrt(x^2-1) * (x * arccot(x) + log(1 + x^2)/2) / x) dx.

A348683 Decimal expansion of the average length of a chord in a unit cube defined by the intersection of the surface with a straight line passing through 2 points uniformly and independently chosen at random in the interior of the cube.

Original entry on oeis.org

1, 1, 0, 2, 8, 4, 5, 3, 0, 3, 7, 7, 8, 6, 2, 7, 0, 5, 8, 5, 9, 3, 0, 5, 1, 8, 8, 8, 7, 4, 7, 3, 5, 5, 9, 6, 9, 5, 7, 7, 3, 3, 3, 5, 5, 9, 6, 5, 1, 5, 8, 9, 3, 4, 1, 3, 4, 8, 2, 4, 0, 3, 8, 2, 4, 6, 5, 9, 7, 4, 4, 1, 0, 2, 3, 0, 9, 9, 6, 0, 5, 2, 1, 7, 7, 7, 5, 4, 1, 3, 4, 6, 1, 3, 5, 1, 1, 8, 6, 6, 9, 1, 9, 5, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Examples

			1.10284530377862705859305188874735596957733355965158...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4/63 - Pi/9 + 17*Sqrt[2]/63 - 2*Sqrt[3]/21 + Log[1+Sqrt[2]]/3 + 2*Log[2+Sqrt[3]]/3, 10, 100][[1]]
  • PARI
    4/63 - Pi/9 + 17*sqrt(2)/63 - 2*sqrt(3)/21 + log(1+sqrt(2))/3 + 2*log(2+sqrt(3))/3 \\ Michel Marcus, Oct 29 2021

Formula

Equals 4/63 - Pi/9 + 17*sqrt(2)/63 - 2*sqrt(3)/21 + log(1+sqrt(2))/3 + 2*log(2+sqrt(3))/3.

A355415 Decimal expansion of the average distance between the center of a unit cube to a point on its surface uniformly chosen by a random direction from the center.

Original entry on oeis.org

6, 1, 0, 6, 8, 7, 4, 0, 1, 9, 5, 1, 5, 8, 3, 8, 5, 6, 5, 3, 4, 6, 6, 7, 2, 2, 9, 6, 7, 3, 7, 1, 6, 6, 2, 8, 4, 6, 9, 1, 1, 5, 5, 2, 5, 8, 1, 9, 0, 7, 4, 6, 2, 7, 5, 8, 9, 9, 2, 9, 9, 4, 1, 0, 2, 5, 9, 6, 8, 1, 5, 7, 3, 6, 2, 8, 8, 6, 6, 4, 1, 3, 7, 2, 1, 4, 5, 0, 5, 5, 9, 6, 5, 7, 6, 6, 0, 8, 0, 8, 3, 3, 5, 7, 2
Offset: 0

Views

Author

Amiram Eldar, Jul 01 2022

Keywords

Comments

If the point is uniformly chosen at random on the surface, then the average is A097047.

Examples

			0.61068740195158385653466722967371662846911552581907...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(3/Pi)*Integrate[ArcCot[Sqrt[1 + x^2]]/Sqrt[1 + x^2], {x, 0, 1}], 101], 10, 100][[1]]
    (* or *)
    RealDigits[3 * ((Im[PolyLog[2, (3 - 2*Sqrt[2])*I]] - Catalan)/Pi - Log[17 - 12*Sqrt[2]]/8), 10, 100][[1]]

Formula

Equals (1/2) * Integral_{x=-1..1, y=-1..1} (1 + x^2 + y^2)^(-1) dx dy / Integral_{x=-1..1, y=-1..1} (1 + x^2 + y^2)^(-3/2) dx dy.
Equals (3/Pi) * Integral_{x=0..1} arccot(sqrt(1+x^2))/sqrt(1+x^2) dx.
Equals (6/Pi) * Integral_{x=0..Pi/4} log(sqrt(1+cos(x)^2)/cos(x)) dx.
Equals 3 * ((Im(Li_2((3-2*sqrt(2))*i)) - G)/Pi - log(17-12*sqrt(2))/8), where Li_2 is the dilogarithm function, i is the imaginary unit, and G is Catalan's constant (A006752).
Showing 1-4 of 4 results.