cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A347928 Triangle read by rows, T(n, k) are the coefficients of the scaled Mandelbrot-Larsen polynomials P(n, x) = 2^(2*n-1)*M(n, x), where M(n, x) are the Mandelbrot-Larsen polynomials; for 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 0, 4, 2, 0, 16, 12, 12, 5, 0, 0, 32, 40, 40, 14, 0, 0, 192, 208, 168, 140, 42, 0, 0, 0, 640, 800, 720, 504, 132, 0, 2048, 1792, 2688, 3920, 3584, 3080, 1848, 429, 0, 0, 4096, 4608, 11520, 17760, 16512, 13104, 6864, 1430
Offset: 0

Views

Author

Peter Luschny, Oct 27 2021

Keywords

Comments

To avoid confusion: the polynomials which are called 'Mandelbrot polynomials' by some authors are listed in A137560. The name 'Mandelbrot-Larsen' polynomials was introduced in Calkin, Chan, & Corless to distinguish them from the Mandelbrot polynomials.

Examples

			Triangle starts:
[0]  0;
[1]  0,    1;
[2]  0,    2,    1;
[3]  0,    0,    4,    2;
[4]  0,   16,   12,   12,     5;
[5]  0,    0,   32,   40,    40,    14;
[6]  0,    0,  192,  208,   168,   140,    42;
[7]  0,    0,    0,  640,   800,   720,   504,   132;
[8]  0, 2048, 1792, 2688,  3920,  3584,  3080,  1848,  429;
[9]  0,    0, 4096, 4608, 11520, 17760, 16512, 13104, 6864, 1430.
		

Crossrefs

Programs

  • Maple
    M := proc(n, x) local k; option remember;
    if n = 0 then 0 elif n = 1 then x else add(M(k, x)*M(n-k, x), k = 1..n-1) +
    ifelse(n::even, M(n/2, x), 0) fi; expand(%/2) end:
    P := n -> 2^(2*n - 1)*M(n, x):
    row := n -> seq(coeff(P(n), x, k), k = 0..n): seq(row(n), n = 0..9);
  • Mathematica
    M[n_, x_] := M[n, x] = Module[{k, w}, w = Which[n == 0, 0, n == 1, x, True, Sum[M[k, x]*M[n-k, x], {k, 1, n-1}] + If[EvenQ[n], M[n/2, x], 0]]; Expand[w/2]];
    P[n_] := 2^(2*n - 1)*M[n, x];
    row [n_] := If[n == 0, {0}, CoefficientList[P[n], x]];
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jul 07 2022, after Maple code *)

Formula

The Mandelbrot-Larsen polynomials are defined: M(0, x) = 0; M(1, x) = x/2;
M(n, x) = (1/2)*(even(n)*M(n/2, x) + Sum_{k=1..n-1} M(k, x)*M(n-k, x)) for n > 1. Here even(n) = 1 if n is even, otherwise 0.
P(n, x) = 2^(2*n-1)*M(n, x) (scaled Mandelbrot-Larsen polynomials).
T(n, k) = [x^k] P(n, x).
[x^k] M(n,k) = A348679(n, k) / A348678(n, k).
M(n, 2*k) = P(n, 2*k) / 2^(2*n-1) = A319539(n, k).
P(n, k) = A348686(n, k).
T(n, n) = A000108(n-1) for n >= 1, Catalan numbers.
T(n+2, n+1) / 2 = A000984(n) for n >= 0, central binomials.
P(n, 1) = A088674(n-1) for n >= 1, also row sums.
M(n, 2) = A001190(n) for n >= 0.
M(n, 4) = A083563(n) for n >= 0.
M(n,-4) = -A107087(n) for n >= 1.
M(n, 6) = A220816(n) for n >= 1.
M(n, 8) = A220817(n) for n >= 1.
Conjecture (Calkin, Chan, & Corless): content(P(n)) = gcd(row(n)) = A048896(n-1) for n >= 1.
Showing 1-1 of 1 results.