A348704 a(n) = Sum_{x_1+x_2+ ... +x_n=n, 0 <= x_1<= x_2 <= ... <= x_n <= n} ((n-1)*n)!/((n-x_1)! * (n-x_2)! * ... * (n-x_n)!).
1, 1, 3, 170, 1027950, 1079901406584, 448687115051986530720, 89290138377185872821028908288000, 14759276773881730859717740767606565269685350000, 2387650794422480788739162652666454048976136433287918499830000000
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..15
Programs
-
Ruby
def f(n) return 1 if n < 2 (1..n).inject(:*) end def A(k, n) sum = 0 m = f((k - 1) * n) (0..n).to_a.repeated_combination(k){|i| if (0..k - 1).inject(0){|s, j| s + i[j]} == n sum += m / (0..k - 1).inject(1){|s, j| s * f(n - i[j])} end } sum end def A348704(n) (0..n).map{|i| A(i, i)} end p A348704(7)