cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348722 Decimal expansion of 4*cos(8*Pi/13)*cos(12*Pi/13).

Original entry on oeis.org

1, 3, 7, 7, 2, 0, 2, 8, 5, 3, 9, 7, 2, 9, 5, 7, 7, 1, 1, 7, 2, 1, 7, 5, 0, 4, 9, 3, 1, 6, 0, 1, 2, 0, 4, 1, 3, 6, 1, 4, 3, 4, 7, 4, 2, 3, 3, 6, 2, 1, 7, 9, 1, 4, 8, 5, 5, 3, 2, 2, 2, 6, 5, 1, 1, 6, 8, 7, 5, 2, 5, 1, 8, 1, 1, 6, 5, 0, 2, 1, 7, 7, 6, 8, 2, 2, 3, 3, 1, 9, 6, 0, 9, 2, 5, 6, 8, 5, 5, 7
Offset: 1

Views

Author

Peter Bala, Oct 31 2021

Keywords

Comments

Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1.
In the case a = 1, corresponding to the prime p = 13, Shanks' cyclic cubic is x^3 - x^2 - 4*x - 1 of discriminant 13^2. The three real roots of the cubic are r_0 = 4*cos(2*Pi/13)*cos(3*Pi/13) = 2.6510934089..., r_1 = - 4*cos(4*Pi/13)*cos(6*Pi/13) = - 0.2738905549... and r_2 = - 4*cos(8*Pi/13)*cos(12*Pi/13) = - 1.3772028539.... Here we consider the absolute value of the root r_2.
See A348720 and A348721 for the other two roots.

Examples

			1.3772028539729577117217504931601204136143474233621 ...
		

Crossrefs

Programs

  • Maple
    evalf(4*cos(8*Pi/13)*cos(12*Pi/13), 100);
  • Mathematica
    RealDigits[4*Cos[8*Pi/13]*Cos[12*Pi/13], 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)

Formula

Equals 4*cos(Pi/13)*cos(5*Pi/13).
Equals 2*(cos(4*Pi/13) + cos(6*Pi/13)).
Equals 2*(cos(Pi/13) + cos(5*Pi/13) - cos(2*Pi/13) - cos(10*Pi/13)) - 1.
Equals sin(2*Pi/13)*sin(3*Pi/13)/(sin(Pi/13)*sin(5*Pi/13)).
Equals Product_{n >= 0} (13*n+2)*(13*n+3)*(13*n+10)*(13*n+11)/( (13*n+1)*(13*n+5)*(13*n+8)*(13*n+12) ).
Equivalently, let z = exp(2*Pi*i/13). Then the constant equals abs( (1 - z^2)*(1 - z^3)/((1 - z)*(1 - z^5)) ).
Note: C = {1, 5, 8, 12} is the subgroup of nonzero cubic residues in the finite field Z_13 with cosets 2*C = {2, 3, 10, 11} and 4*C = {4, 6, 7, 9}.
Equals (-1)^(4/13) + (-1)^(6/13) - (-1)^(7/13) - (-1)^(9/13). - Peter Luschny, Nov 08 2021