A348722 Decimal expansion of 4*cos(8*Pi/13)*cos(12*Pi/13).
1, 3, 7, 7, 2, 0, 2, 8, 5, 3, 9, 7, 2, 9, 5, 7, 7, 1, 1, 7, 2, 1, 7, 5, 0, 4, 9, 3, 1, 6, 0, 1, 2, 0, 4, 1, 3, 6, 1, 4, 3, 4, 7, 4, 2, 3, 3, 6, 2, 1, 7, 9, 1, 4, 8, 5, 5, 3, 2, 2, 2, 6, 5, 1, 1, 6, 8, 7, 5, 2, 5, 1, 8, 1, 1, 6, 5, 0, 2, 1, 7, 7, 6, 8, 2, 2, 3, 3, 1, 9, 6, 0, 9, 2, 5, 6, 8, 5, 5, 7
Offset: 1
Examples
1.3772028539729577117217504931601204136143474233621 ...
Links
- T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), 147-158 (see case 4 in the Table)
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152
Programs
-
Maple
evalf(4*cos(8*Pi/13)*cos(12*Pi/13), 100);
-
Mathematica
RealDigits[4*Cos[8*Pi/13]*Cos[12*Pi/13], 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
Formula
Equals 4*cos(Pi/13)*cos(5*Pi/13).
Equals 2*(cos(4*Pi/13) + cos(6*Pi/13)).
Equals 2*(cos(Pi/13) + cos(5*Pi/13) - cos(2*Pi/13) - cos(10*Pi/13)) - 1.
Equals sin(2*Pi/13)*sin(3*Pi/13)/(sin(Pi/13)*sin(5*Pi/13)).
Equals Product_{n >= 0} (13*n+2)*(13*n+3)*(13*n+10)*(13*n+11)/( (13*n+1)*(13*n+5)*(13*n+8)*(13*n+12) ).
Equivalently, let z = exp(2*Pi*i/13). Then the constant equals abs( (1 - z^2)*(1 - z^3)/((1 - z)*(1 - z^5)) ).
Note: C = {1, 5, 8, 12} is the subgroup of nonzero cubic residues in the finite field Z_13 with cosets 2*C = {2, 3, 10, 11} and 4*C = {4, 6, 7, 9}.
Equals (-1)^(4/13) + (-1)^(6/13) - (-1)^(7/13) - (-1)^(9/13). - Peter Luschny, Nov 08 2021
Comments