A348731 Decimal expansion of Integral_{x=0..1} x*log(x)/(1+x+x^2) dx (negated).
1, 5, 7, 6, 6, 0, 1, 4, 9, 1, 6, 7, 8, 3, 2, 3, 3, 0, 3, 9, 0, 5, 4, 4, 6, 7, 4, 0, 6, 9, 9, 6, 2, 2, 1, 8, 2, 2, 3, 7, 4, 9, 4, 6, 5, 4, 6, 2, 9, 5, 6, 7, 6, 9, 1, 3, 4, 1, 3, 6, 0, 4, 4, 9, 7, 3, 2, 2, 5, 6, 6, 4, 4, 7, 5, 2, 5, 7, 8, 4, 8, 8, 9, 8, 1, 0, 8, 1, 8, 1, 4, 5, 7, 1, 4, 7, 9, 7, 1, 2, 5, 7, 4, 8, 0
Offset: 0
Examples
-0.15766014916783233039054467406996221822374946546295676913413604497322566...
Programs
-
Mathematica
RealDigits[Integrate[x*Log[x]/(1 + x + x^2), {x, 0, 1}], 10, 100][[1]] (* Amiram Eldar, Oct 31 2021 *) RealDigits[Pi^2/54 - PolyGamma[1, 2/3]/9, 10, 100][[1]] (* Vaclav Kotesovec, Oct 31 2021 *)
-
PARI
intnum(x=0, 1, x*log(x)/(1+x+x^2)) \\ Michel Marcus, Oct 31 2021
-
SageMath
RealField(25)(numerical_integral(x*log(x)/(1+x+x^2), 0, 1)[0])
Formula
Equals Pi^2/54 - PolyGamma(1, 2/3)/9. - Vaclav Kotesovec, Oct 31 2021