cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348732 a(n) = A003959(n) - A034448(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 18, 6, 0, 0, 16, 0, 0, 0, 64, 0, 18, 0, 24, 0, 0, 0, 72, 10, 0, 36, 32, 0, 0, 0, 210, 0, 0, 0, 94, 0, 0, 0, 108, 0, 0, 0, 48, 36, 0, 0, 256, 14, 30, 0, 56, 0, 108, 0, 144, 0, 0, 0, 96, 0, 0, 48, 664, 0, 0, 0, 72, 0, 0, 0, 342, 0, 0, 40, 80, 0, 0, 0, 384, 174, 0, 0, 128, 0, 0, 0, 216, 0, 108
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2021

Keywords

Crossrefs

Cf. A003959, A005117 (positions of zeros), A034448, A034460, A048146, A348029, A348507.

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348732(n) = (A003959(n)-A034448(n));

Formula

a(n) = A003959(n) - A034448(n).
a(n) = A348507(n) - A034460(n).
a(n) = A048146(n) + A348029(n).