A348735 Denominator of Product((p+1)^e / ((p^e)+1)), when n = Product(p^e), with p primes, and e their exponents.
1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 17, 1, 5, 1, 5, 1, 1, 1, 1, 13, 1, 7, 5, 1, 1, 1, 11, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 17, 25, 13, 1, 5, 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 5, 65, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 13, 5, 1, 1, 1, 17, 41, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 11, 1, 25, 5, 65
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..21125
Programs
-
Mathematica
f[p_, e_] := (p + 1)^e/(p^e + 1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
-
PARI
A348735(n) = { my(f = factor(n)); denominator(prod(k=1, #f~, ((1+f[k, 1])^f[k, 2])/(1+(f[k, 1]^f[k, 2])))); };
-
PARI
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; A348735(n) = { my(u=A034448(n)); (u/gcd(u, A003959(n))); };
Comments