cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348735 Denominator of Product((p+1)^e / ((p^e)+1)), when n = Product(p^e), with p primes, and e their exponents.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 17, 1, 5, 1, 5, 1, 1, 1, 1, 13, 1, 7, 5, 1, 1, 1, 11, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 17, 25, 13, 1, 5, 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 5, 65, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 13, 5, 1, 1, 1, 17, 41, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 11, 1, 25, 5, 65
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 1444 = 2^2 * 19^2, where a(1444) = 181 <> 5*181 = a(4)*a(361). See A348740 for the list of such positions.

Crossrefs

Cf. A003959, A034448, A348733, A348734 (numerators), A348740.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e/(p^e + 1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A348735(n) = { my(f = factor(n)); denominator(prod(k=1, #f~, ((1+f[k, 1])^f[k, 2])/(1+(f[k, 1]^f[k, 2])))); };
    
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348735(n) = { my(u=A034448(n)); (u/gcd(u, A003959(n))); };

Formula

a(n) = A034448(n) / A348733(n) = A034448(n) / gcd(A003959(n), A034448(n)).