A348740 Positions k where A348733(k) is not multiplicative.
1444, 3249, 3364, 4332, 4563, 6498, 7220, 7569, 9126, 10092, 10108, 12996, 13924, 15138, 15884, 16245, 16820, 17689, 18252, 18772, 21125, 21660, 22743, 22815, 23104, 23548, 24548, 24964, 25992, 27436, 30276, 30324, 31329, 31684, 31941, 32490, 33212, 35378, 35739, 36100, 36504, 37004, 37845, 38988, 41209, 41772
Offset: 1
Keywords
Programs
-
Mathematica
f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a1[1] = 1; a1[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), Times @@ f2 @@@ f]; f3[p_, e_] := a1[p^e]; a2[n_] := Times @@ f3 @@@ FactorInteger[n]; Position[Table[a2[n] - a1[n], {n, 1, 42000}], ?(# != 0 &)] // Flatten (* _Amiram Eldar, Nov 05 2021 *)
-
PARI
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; A348733(n) = gcd(A003959(n), A034448(n)); A348733mult(n) = { my(f = factor(n)); prod(k=1, #f~, A348733(f[k, 1]^f[k, 2])); }; isA348740(n) = (A348733(n)!=A348733mult(n));
Comments