cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348740 Positions k where A348733(k) is not multiplicative.

Original entry on oeis.org

1444, 3249, 3364, 4332, 4563, 6498, 7220, 7569, 9126, 10092, 10108, 12996, 13924, 15138, 15884, 16245, 16820, 17689, 18252, 18772, 21125, 21660, 22743, 22815, 23104, 23548, 24548, 24964, 25992, 27436, 30276, 30324, 31329, 31684, 31941, 32490, 33212, 35378, 35739, 36100, 36504, 37004, 37845, 38988, 41209, 41772
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

Numbers k with a factorization into coprime x and k/x with A348733(x) * A348733(k/x) <> A348733(k).

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a1[1] = 1; a1[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), Times @@ f2 @@@ f]; f3[p_, e_] := a1[p^e]; a2[n_] := Times @@ f3 @@@ FactorInteger[n]; Position[Table[a2[n] - a1[n], {n, 1, 42000}], ?(# != 0 &)] // Flatten (* _Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348733(n) = gcd(A003959(n), A034448(n));
    A348733mult(n) = { my(f = factor(n)); prod(k=1, #f~, A348733(f[k, 1]^f[k, 2])); };
    isA348740(n) = (A348733(n)!=A348733mult(n));