cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348746 Fully multiplicative with a(2) = 3, a(3) = 5, a(A002144(n)) = A002144(1+n) and a(A002145(1+n)) = a(A002145(1+n)) for all n >= 1, where A002144 and A002145 give the primes of the form 4k+1 and 4k+3 respectively.

Original entry on oeis.org

1, 3, 5, 9, 13, 15, 7, 27, 25, 39, 11, 45, 17, 21, 65, 81, 29, 75, 19, 117, 35, 33, 23, 135, 169, 51, 125, 63, 37, 195, 31, 243, 55, 87, 91, 225, 41, 57, 85, 351, 53, 105, 43, 99, 325, 69, 47, 405, 49, 507, 145, 153, 61, 375, 143, 189, 95, 111, 59, 585, 73, 93, 175, 729, 221, 165, 67, 261, 115, 273, 71, 675, 89, 123
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Permutation of odd numbers. Preserves the prime signature.

Crossrefs

Cf. A000720, A002144, A002145, A348744, A348747 (left inverse).
Cf. also A003961, A332818 for similar maps.

Programs

  • PARI
    A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };

Formula

Fully multiplicative with a(p) = A348744(A000720(p)), where A348744 is the lexicographically earliest bijection from primes to odd primes where each prime of the form 4k+1 is mapped to the next larger prime of the same form.