cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348749 Odd numbers k for which A064989(sigma(k)) > A064989(k), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.

Original entry on oeis.org

9, 25, 45, 49, 75, 81, 117, 121, 225, 243, 289, 325, 333, 405, 441, 529, 549, 605, 625, 657, 675, 729, 841, 925, 1053, 1089, 1125, 1215, 1225, 1413, 1445, 1521, 1525, 1575, 1665, 1681, 1737, 1825, 1875, 2025, 2205, 2401, 2475, 2493, 2601, 2817, 2825, 2925, 2997, 3025, 3033, 3125, 3249, 3481, 3573, 3645, 3675, 3789
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Sequence obtained when A003961 is applied to A348739 and the terms are sorted into ascending order.
From Robert Israel, Nov 12 2024: (Start)
If a and b are terms and are coprime, then a * b is a term.
If p > 2 is in A053182, Legendre's conjecture implies p^2 is in this sequence. (End)

Crossrefs

Cf. A000203, A003961, A053182, A064989, A326042, A348739, A348748, A348939 (terms of A228058 that occur here).
Cf. also A348742, A348754.

Programs

  • Maple
    g:= prevprime: g(2):= 1:
    f:= proc(n) local F,t;
      F:= ifactors(n)[2];
      mul(g(t[1])^t[2],t=F)
    end proc:
    select(t -> f(numtheory:-sigma(t)) > f(t), [seq(i,i=1..4000,2)]); # Robert Israel, Nov 12 2024
  • Mathematica
    f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 4000, 2], s[DivisorSigma[1, #]] > s[#] &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    isA348749(n) = ((n%2)&&(A064989(sigma(n)) > A064989(n)));