cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348750 a(n) = A064989(A064989(sigma(A003961(A003961(n))))), where A003961 shifts the prime factorization of n one step towards larger primes, and A064989 shifts it back towards smaller primes.

Original entry on oeis.org

1, 1, 1, 23, 1, 1, 3, 7, 13, 1, 1, 23, 2, 3, 1, 305, 1, 13, 2, 23, 3, 1, 1, 7, 39, 2, 4, 69, 13, 1, 3, 69, 1, 1, 3, 299, 5, 2, 2, 7, 1, 3, 1, 23, 13, 1, 2, 305, 53, 39, 1, 46, 23, 4, 1, 21, 2, 13, 11, 23, 1, 3, 39, 19501, 2, 1, 29, 23, 1, 3, 2, 91, 3, 5, 39, 46, 3, 2, 2, 305, 2791, 1, 9, 69, 1, 1, 13, 7, 11, 13, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Crossrefs

Cf. A000203, A003961, A003973, A064989, A326042, A348751 (a(n) < n), A348752 (a(n) > n).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A348750(n) = A064989(A064989(sigma(A003961(A003961(n)))));

Formula

a(n) = A064989(A326042(A003961(n))).
Multiplicative with a(p^e) = A064989(A064989((q^(e+1)-1)/(q-1))), where q = nextPrime(nextPrime(p)).

A348754 Numbers k congruent to 1 or 5 mod 6, for which A064989(A064989(sigma(k))) > A064989(A064989(k)), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.

Original entry on oeis.org

25, 49, 121, 169, 175, 275, 289, 325, 625, 841, 925, 1225, 1445, 1525, 1675, 1681, 1825, 2401, 3025, 3125, 3481, 3757, 3925, 4075, 4225, 4375, 4825, 5041, 5275, 5929, 6125, 6875, 6925, 7075, 7225, 7825, 7921, 8125, 8275, 8281, 9025, 9925, 10201, 10525, 10625, 10693, 11425, 11875, 12005, 12025, 13075, 13225, 13475
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Comments

Sequence A003961(A003961(A348752(n))), n=1.., sorted into ascending order.
Not a subsequence of A348749. The first terms that occur here but not there are: 169, 175, 275, 1675, 3757, 4075, 5275, 7075, 8275, 10693, 12025, ...

Crossrefs

Cf. also A348749, A348932, A348936 (square roots of squares present).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[15000], MemberQ[{1, 5}, Mod[#, 6]] && s[s[DivisorSigma[1, #]]] > s[s[#]] &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    isA348754(n) = ((n%2)&&(n%3)&&(A064989(A064989(sigma(n))) > A064989(A064989(n))));
Showing 1-2 of 2 results.