cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348762 a(n) = A000265((n-8)*(n+8)).

Original entry on oeis.org

17, 9, 57, 5, 105, 33, 161, 3, 225, 65, 297, 21, 377, 105, 465, 1, 561, 153, 665, 45, 777, 209, 897, 15, 1025, 273, 1161, 77, 1305, 345, 1457, 3, 1617, 425, 1785, 117, 1961, 513, 2145, 35, 2337, 609, 2537, 165, 2745, 713, 2961, 3, 3185, 825, 3417, 221, 3657
Offset: 9

Views

Author

Simon Strandgaard, Oct 31 2021

Keywords

Comments

Shares 495 initial terms with A061049. First difference is A061049(504)=62 vs. a(504)=31.

Examples

			a( 9) = A000265(( 9-8)*( 9+8)) = A000265( 17) = 17,
a(10) = A000265((10-8)*(10+8)) = A000265( 36) = 9,
a(11) = A000265((11-8)*(11+8)) = A000265( 57) = 57,
a(12) = A000265((12-8)*(12+8)) = A000265( 80) = 5,
a(13) = A000265((13-8)*(13+8)) = A000265(105) = 105.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n - 8)*(n + 8)/2^IntegerExponent[(n - 8)*(n + 8), 2]; Array[a, 53, 9] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A000265(n) = n >> valuation(n, 2);
    a(n) = A000265((n-8)*(n+8));
    [a(n)|n<-[9..27]]
    
  • Python
    def A348762(n):
        a, b = divmod(n*n-64, 2)
        while b == 0:
            a, b = divmod(a,2)
        return 2*a+b # Chai Wah Wu, Dec 05 2021
  • Ruby
    p (9..27).map { |n| x = (n-8)*(n+8); x /= 2 while x.even?; x }
    

Formula

a(n) = A000265(A098849(n-8)).