A350493 a(n) = floor(sqrt(prime(n)))^2 mod n.
0, 1, 1, 0, 4, 3, 2, 0, 7, 5, 3, 0, 10, 8, 6, 1, 15, 13, 7, 4, 1, 20, 12, 9, 6, 22, 19, 16, 13, 10, 28, 25, 22, 19, 4, 0, 33, 30, 27, 9, 5, 1, 40, 37, 16, 12, 8, 4, 29, 25, 21, 17, 13, 9, 36, 32, 28, 24, 20, 16, 12, 41, 37, 33, 29, 25, 56, 52, 48, 44, 40, 36
Offset: 1
Keywords
Examples
a(4) = A065730(4) mod 4 = 4 mod 4 = 0; a(5) = A065730(5) mod 5 = 9 mod 5 = 4; a(6) = A065730(6) mod 6 = 9 mod 6 = 3; a(7) = A065730(7) mod 7 = 16 mod 7 = 2.
Programs
-
Mathematica
Table[PowerMod[Floor[Sqrt[Prime[n]]],2,n],{n,72}] (* Stefano Spezia, Jan 02 2022 *)
-
PARI
a(n) = (sqrtint(prime(n))^2) % n; vector(20,n,a(n))
-
Python
from sympy import prime, integer_nthroot def a(n): return (integer_nthroot(prime(n), 2)[0]**2)%n print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Jan 02 2022
-
Ruby
require 'prime' values = [] Prime.first(20).each_with_index do |prime, i| values << ((Integer.sqrt(prime) ** 2) % (i + 1)) end p values
Formula
a(n) = A065730(n) mod n.
Comments