cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348827 Nonsquare numbers k such that the denominator of the harmonic mean of the divisors of k is larger than 2*k.

Original entry on oeis.org

320000, 941192, 1229312, 3001250, 5120000, 8000000, 14172488, 14623232, 15059072, 19668992, 35701250, 38614472, 42762752, 60236288, 66724352, 75031250, 121726800, 128000000, 143278592, 147061250, 168480000, 222814800, 226759808, 233971712, 257875200, 319813200
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2021

Keywords

Comments

The smallest term that is not twice a square is a(17) = 121726800 = 13 * 3060^2.

Examples

			320000 = 2 * 400^2 is a term since it is not a square, the harmonic mean of the divisors of 320000 is 16000000/798963 and 798963 > 2*320000 = 640000.
		

Crossrefs

Intersection of A000037 and A348826.
Subsequence of A005101 and A348825.

Programs

  • Mathematica
    q[n_] := !IntegerQ @ Sqrt[n] && Denominator[DivisorSigma[0, n]/DivisorSigma[-1, n]] > 2*n; Select[Range[8000000], q]
  • PARI
    isok(k) = if (!issquare(k), my(d=divisors(k)); (denominator(#d/sum(i=1, #d, 1/d[i])) > 2*k)); \\ Michel Marcus, Nov 01 2021
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=320000, lim\1, if(gcd(n[2][, 2])%2 && denominator(sigma(n, 0)/sigma(n, -1))>2*n[1], listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 01 2021