cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348828 Numbers that are equal to the product of the numerator and denominator of the harmonic mean of their divisors.

Original entry on oeis.org

1, 30, 138, 210, 2280, 4676, 5970, 6972, 8372, 10290, 12012, 12306, 20370, 22386, 105420, 116844, 118524, 153480, 189420, 195860, 204204, 218430, 289560, 293880, 362180, 369740, 408510, 414990, 494760, 525420, 629640, 933660, 952770, 1529010, 1564332, 1647810
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2021

Keywords

Comments

Numbers k such that A099377(k) * A099378(k) = k.
Is 1 the only odd term? There are no other odd terms below 3*10^9.

Examples

			30 is a term since the harmonic mean of its divisors is 10/3 and 10*3 = 30.
138 is a term since the harmonic mean of its divisors is 23/6 and 23*6 = 138.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Numerator[(hm = DivisorSigma[0, n]/DivisorSigma[-1, n])] * Denominator[hm] == n; Select[Range[10^6], q]
  • PARI
    isok(k) = my(d=divisors(k), h=#d/sum(i=1, #d, 1/d[i])); k == numerator(h)*denominator(h); \\ Michel Marcus, Nov 01 2021