A348876
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x * A(3*x)).
Original entry on oeis.org
1, 2, 10, 122, 3778, 321794, 79518154, 58289895290, 127713856067074, 838441945709583746, 16506407616569722560778, 974752895709158578160969978, 172678450359956040815290930278850, 91769099059347441553324620759011469698, 146309952397373808216450794120154608358754762
Offset: 0
-
nmax = 14; A[] = 0; Do[A[x] = 1/(1 - x - x A[3 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[3^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
A348877
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x * A(4*x)).
Original entry on oeis.org
1, 2, 12, 232, 15792, 4108192, 4223439552, 17316156716672, 283777228606348032, 18598759772257600748032, 4875627680189345535622228992, 5112485673116229482189477259405312, 21443339558695300334256395183459423465472, 359759625310995318218730673236935427042834358272
Offset: 0
-
nmax = 13; A[] = 0; Do[A[x] = 1/(1 - x - x A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[4^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]
A349032
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x * A(-2*x)).
Original entry on oeis.org
1, 2, 0, -8, 48, 1024, -29376, -2008960, 249483264, 64889376256, -32966832018432, -33890678261809152, 69272943033878630400, 284019472607289480388608, -2325552273529676473281282048, -38111154065733485540332985155584, 1248673879720871231428642700812025856
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = 1/(1 - x - x A[-2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[(-2)^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
A348903
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x - x * A(2*x)).
Original entry on oeis.org
1, 3, 15, 123, 1623, 35427, 1349727, 94653195, 12690736167, 3325408581747, 1722610175806383, 1774299723226774683, 3644417103927252697335, 14949404433893216347632003, 122555228634241017164802041343, 2008680242472430855727593100321067
Offset: 0
A349012
G.f. A(x) satisfies: A(x) = (1 + x * A(2*x)) / (1 - x * A(x)).
Original entry on oeis.org
1, 2, 8, 52, 552, 10208, 350112, 23159760, 3012389984, 777296223040, 399542726439936, 409933997609848192, 840366306053838941952, 3443822768422065940362240, 28218687132517064788995222528, 462391421142204650963524251763968, 15152566983759983965941543133445666304
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = (1 + x A[2 x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = 2^(n - 1) a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
Showing 1-5 of 5 results.