cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348898 a(n) = 15120*(2*n)!/(n!*(n + 5)!); super ballot numbers, row 4 of A135573.

Original entry on oeis.org

126, 42, 36, 45, 70, 126, 252, 546, 1260, 3060, 7752, 20349, 55062, 152950, 434700, 1260630, 3721860, 11165580, 33982200, 104778450, 326908764, 1031019948, 3283989464, 10555680420, 34214964120, 111768882792, 367755678864, 1218190686237, 4060635620790, 13615072375590
Offset: 0

Views

Author

Peter Luschny, Nov 03 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 15120*(2*n)!/(n!*(n + 5)!): seq(a(n), n = 0..29);
  • Mathematica
    a[n_] := 4^(n + 5) Hypergeometric2F1[11/2, 1/2 - n, 13/2, 1] / (11 Pi);
    Table[a[n], {n, 0, 29}]
  • PARI
    a(n)=126*binomial(2*n,n)/binomial(n+5,5) \\ Charles R Greathouse IV, Oct 23 2023
  • Sage
    def A348898(n): return -(-4)^(5 + n)*binomial(9/2, 5 + n)/2
    print([A348898(n) for n in range(30)])  # Peter Luschny, Nov 04 2021
    

Formula

a(n) = (1/(2*Pi))*Integral_{x=0..4} x^n*(4 - x)^(9/2)*x^(-1/2). This is the integral representation of the n-th moment of a positive function on [0, 4]. This representation is unique.
E.g.f.: x^(-4)*exp(2*x)*((-256*x^4 - 160*x^3 - 108*x^2 - 60*x - 24)*BesselI(1, 2*x) + (256*x^4 + 96*x^3 + 60*x^2 + 24*x)*BesselI(0, 2*x)).
O.g.f.: ((512*x^4 - 325*x^3 + 110*x^2 - 17*x + 1)*sqrt(1 - 4*x) - 748*x^4 + 515*x^3 - 142*x^2 + 19*x - 1)/(sqrt(1 - 4*x)*(1 + sqrt(1 - 4*x))*x^4).
a(n) = 4^(n + 5)*hypergeom([11/2, 1/2 - n], [13/2], 1) / (11*Pi).
a(n) = -(-4)^(5 + n)*binomial(9/2, 5 + n)/2. - Peter Luschny, Nov 04 2021
From Peter Bala, Mar 11 2023: (Start)
P-recursive: (n + 5)*a(n) = 2*(2*n - 1)*a(n-1) with a(0) = 126.
a(n) = Sum_{k = 0..4} (-1)^k*4^(4-k)*binomial(4,k)*Catalan(n+k) = 256*Catalan(n) - 256*Catalan(n+1) + 96*Catalan(n+2) - 16*Catalan(n+3) + Catalan(n+4), where Catalan(n) = A000108(n). Thus a(n) is an integer for all n.
a(n) is odd if n = 2^k - 5, k >= 3, otherwise a(n) is even. (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = 47/630 + 44*Pi/(2187*sqrt(3)).
Sum_{n>=0} (-1)^(n+1)/a(n) = 13/218750 + 88*log(phi)/(15625*sqrt(5)), where phi is the golden ratio (A001622). (End)