cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348899 a(n) = 332640*4^n*Gamma(n + 1/2)/(sqrt(Pi)*Gamma(n + 7)); super ballot numbers, row 5 of A135573.

Original entry on oeis.org

462, 132, 99, 110, 154, 252, 462, 924, 1980, 4488, 10659, 26334, 67298, 177100, 478170, 1320660, 3721860, 10680120, 31150350, 92205036, 276615108, 840090328, 2580277436, 8007757560, 25090973688, 79319852304, 252832029219, 812127124158, 2627470107570, 8558045493228
Offset: 0

Views

Author

Peter Luschny, Nov 02 2021

Keywords

Crossrefs

Row 5 of array A135573.

Programs

  • Maple
    a := n -> 332640*4^n*GAMMA(n + 1/2)/(sqrt(Pi)*GAMMA(n + 7));
    seq(a(n), n = 0..29);
  • Mathematica
    a[n_] := 4^(n + 6) Hypergeometric2F1[13/2, 1/2 - n, 15/2, 1] / (13 Pi);
    Table[a[n], {n, 0, 29}]
    Array[332640*4^#*Gamma[# + 1/2]/(Sqrt[Pi]*Gamma[# + 7]) &, 30, 0] (* Michael De Vlieger, Nov 02 2021 *)

Formula

Let A[c, k](n) = c*4^n*Gamma(n + 1/2)/(sqrt(Pi)*Gamma(n + k)). Then
A[1, 1](n) = A000984(n).
A[3!, 3](n) = A007054(n).
A[5!*7, 5](n) = A348893(n).
A[7!*66, 7](n) = a(n).
A[c, k](n) ~ -c*2^(2*n - 1)*(k^2 - k - 2*n + 1/4)/(n^(k + 1/2)*sqrt(Pi)).
O.g.f.: ((2048*x^5 - 1686*x^4 + 765*x^3 - 178*x^2 + 21*x - 1)*sqrt(1 - 4*x) - 3496*x^5 + 2934*x^4 - 1083*x^3 + 218*x^2 - 23*x + 1)/(sqrt(1 - 4*x)*(1 + sqrt(1 - 4*x))*x^5).
E.g.f.: 1024*exp(2*x)*((-x^5 - 3/4*x^4 - 41/64*x^3 - 123/256*x^2 - 9/32*x - 15/128)*BesselI(1, 2*x) + BesselI(0, 2*x)*x*(x^4 + 1/2*x^3 + 27/64*x^2 + 9/32*x + 15/128))/x^5.
a(n) = Integral_{x=0..4} x^n*(4-x)^(11/2)/(2*Pi*sqrt(x)). This is the integral representation as the n-th moment of a positive function on [0, 4]. The representation is unique.
a(n) = 4^(n + 6)*hypergeom([13/2, 1/2 - n], [15/2], 1) / (13*Pi).
D-finite with recurrence (n+6)*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
From Peter Bala, Mar 11 2023: (Start)
a(n) = 332640*(2*n)!/(n!*(n + 6)!).
a(n) = Sum_{k = 0..5} (-1)^k*4^(5-k)*binomial(n,k)*Catalan(n+k), where Catalan(n) = A000108(n). Thus a(n) is an integer for all n.
a(n) is odd if n = 2^k - 6, k >= 3, otherwise a(n) is even. (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = 101/3465 + 52*Pi/(6561*sqrt(3)).
Sum_{n>=0} (-1)^(n+1)/a(n) = 8573/54140625 + 104*log(phi)/(78125*sqrt(5)), where phi is the golden ratio (A001622). (End)