cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348929 a(n) = gcd(n, A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 36, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 4, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Differs from similar A126795 for the first time at n=36, where a(36) = 36, while A126795(36) = 12.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348929(n) = gcd(n, A003959(n));

Formula

a(n) = gcd(n, A003959(n)) = gcd(n, A348507(n)) = gcd(A003959(n), A348507(n)).