A348935 Numbers k congruent to 1 or 5 mod 6, for which A064989(A064989(sigma(k^2))) < A064989(A064989(k^2)), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.
19, 23, 31, 37, 43, 47, 53, 61, 67, 73, 79, 83, 97, 103, 107, 109, 113, 127, 133, 137, 139, 149, 151, 157, 163, 179, 181, 191, 193, 197, 199, 211, 217, 223, 229, 233, 239, 241, 247, 251, 257, 259, 263, 269, 271, 277, 281, 283, 299, 301, 307, 311, 313, 317, 331, 335, 337, 341, 347, 349, 353, 359, 367, 371, 373, 379
Offset: 1
Keywords
Links
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[400], MemberQ[{1, 5}, Mod[#, 6]] && s[s[DivisorSigma[1, #^2]]] < s[s[#^2]] &] (* Amiram Eldar, Nov 04 2021 *)
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; isA348935(n) = ((n%2)&&(n%3)&&(A064989(A064989(sigma(n^2))) < A064989(A064989(n^2))));
Comments