cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348936 Numbers k congruent to 1 or 5 mod 6, for which A064989(A064989(sigma(k^2))) > A064989(A064989(k^2)), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.

Original entry on oeis.org

5, 7, 11, 13, 17, 25, 29, 35, 41, 49, 55, 59, 65, 71, 77, 85, 89, 91, 95, 101, 115, 119, 121, 125, 131, 143, 145, 155, 161, 167, 169, 173, 175, 185, 187, 203, 205, 209, 215, 221, 227, 235, 245, 253, 265, 275, 287, 289, 293, 295, 305, 319, 323, 325, 329, 343, 355, 361, 365, 377, 383, 385, 391, 413, 415, 425, 445, 451
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Comments

Square roots of squares present in A348754.
See comments in A348935.

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[450], MemberQ[{1, 5}, Mod[#, 6]] && s[s[DivisorSigma[1, #^2]]] > s[s[#^2]] &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    isA348936(n) = ((n%2)&&(n%3)&&(A064989(A064989(sigma(n^2))) > A064989(A064989(n^2))));